ON THE COHOMOLOGY VANISHING WITH POLYNOMIAL GROWTH ON COMPLEX MANIFOLDS WITH PSEUDOCONVEX BOUNDARY

TAKEO OHSAWA

Dedicated to Tetsuo Ueda on his seventieth birthday

Abstract

H_{p . g .}^{r, s}\) will be studied. It will be shown that, given a complex manifold M, a locally pseudoconvex bounded domain $\Omega \Subset M$ satisfying certain geometric boundary condition and a holomorphic vector bundle $E \rightarrow M, H_{p . g \text {. }}^{r, s}(\Omega, E)=0$ holds for all $s \geq 1$ if E is Nakano positive and $r=\operatorname{dim} M$. It will be also shown that $H_{p . g .}^{r, s}(\Omega, E)=0$ for all r and s with $r+s>\operatorname{dim} M$ if moreover $\operatorname{rank} E=1$. By Deligne-Maltsiniotis-Sasakura's comparison theorem, it follows in particular that, for any smooth projective variety X, for any ample line bundle $L \rightarrow X$ and for any effective divisor D on X such that $\left.[D]\right|_{|D|} \geq 0$, the algebraic cohomology $H_{\text {alg }}^{s}\left(X \backslash|D|, \Omega_{X}^{r}(L)\right)$ vanishes if $r+s>\operatorname{dim} X$.

Introduction

This is a continuation of the series of papers [Oh-2~5]. The motivation of [Oh-2] was to apply a method of Hörmander in [H] to an extension problem on a compact complex manifold M with a holomorphic vector bundle $E \rightarrow M$ and an effective divisor D. It was proved in $\left[\right.$ Oh-2] that the natural restriction map $H^{0}\left(M, \mathcal{O}\left(K_{M} \otimes E \otimes[D]^{\mu}\right)\right) \rightarrow$ $H^{0}\left(|D|, \mathcal{O}_{D}\left(K_{M} \otimes E \otimes[D]^{\mu}\right)\right)$ is surjective for sufficiently large μ if $\left.E\right|_{|D|}$ is positive and $[D]$ is semipositive, where K_{M} denotes the canonical bundle of M. The proof is based on the isomorphisms between the L^{2} cohomology groups $H_{(2)}^{n, s}\left(M, E, g, h e^{-\mu \varphi}\right)$ and $H_{(2)}^{n, s}\left(M, E, g, h e^{-(\mu+1) \varphi}\right)$ ($s \geq 1$), where $n=\operatorname{dim} M, g$ is a complete metric on M, h is a fiber metric of E and φ is a plurisubharmonic exhaustion function on $M \backslash|D|$

[^0]which is of logarithmic growth near $|D|$. The isomorphism is a variant of Proposition 3.4.5 in $[\mathrm{H}]$ (cf. [Oh-1] and [Nk-R]). A somewhat intriguing aspect of this extension theorem is that n is arbitrary although the situation is quite analogous to the Bochner-Hartogs type extension rather than that of Oka and Cartan. In this situation, it seems worthwhile to generalize the result by replacing the assumption $[D] \geq 0$ by $\left.[D]\right|_{|D|} \geq 0$. We note that there are interesting cases where $[D] \nsupseteq 0$ but $\left.[D]\right|_{|D|} \geq 0$ and that the neighborhoods of such D have been studied in detail when $\operatorname{dim} M=2$ and D is smooth by Ueda [U] and Koike [K]. In [Oh-3], it turned out that one can replace the condition $[D] \geq 0$ by $\left.[D]\right|_{|D|} \geq 0$ by modifying Hörmander's technique in such a way that some non-plurisubharmonic function works as φ to establish $H_{(2)}^{n, s}\left(M, E, g, h e^{-\mu \varphi}\right) \cong H_{(2)}^{n, s}\left(M, E, g, h e^{-(\mu+1) \varphi}\right) \quad(s \geq 1)$ for $\mu \gg 1$. By this refinement of Hörmander's method, a bundle-convexity theorem has been obtained in [Oh-4] for a class of locally pseudoconvex domains. An approximation theorem obtained in [O-3] was extended in [Oh-5] to a more restricted class of domains than in [Oh-4]. The purpose of the present article is to show in the same vein that the celebrated vanishing theorems of Akizuki-Kodaira-Nakano naturally extend to this latter class.

Namely, we consider a locally pseudoconvex bounded domain Ω in a (not necessarily compact but connected) complex manifold M and a holomorphic vector bundle $E \rightarrow M$. In what follows we assume that every connected component of $\partial \Omega$ is either a C^{2}-smooth real hypersurface or the support of an effective divisor. For simplicity we assume that each hypersurface component of $\partial \Omega$ separates M into two connected components, since one may take a double covering each time a nonseparating component of $\partial \Omega$ appears. In [Oh-4] we considered those Ω such that the divisorial components of $\partial \Omega$ are supported on an effective divisor whose normal bundles are semipositive. Such Ω will be called weakly pseudoconvex domains of regular type and we set $\partial_{h y p} \Omega:=\partial \bar{\Omega}$ and $\partial_{\text {div }} \Omega:=\partial \Omega \backslash \partial_{h y p} \Omega$. We shall restrict ourselves below to a smaller class of domains by imposing a condition on $\partial_{h y p} \Omega$.

A weakly pseudoconvex domain of regular type Ω will be called a weakly pseudoconvex domain of very regular type if $\partial_{\text {hyp }} \Omega$ is of class C^{3} and the Levi form of the defining function say ρ of $\bar{\Omega}^{\circ}$ satisfies

$$
\partial \bar{\partial} \rho \geq O\left(\rho^{2}\right)
$$

on a neighborhood of $\partial_{\text {hyp }} \Omega$. It will also be called a $\boldsymbol{U B S}$-domain in short, since the conditions on $\partial \Omega$ come from the works of Ueda [U] and Boas-Straube [B-S].

We shall prove the following.

Theorem 0.1. In the above situation, assume that Ω is a UBS domain and E is Nakano positive. Then

$$
\begin{aligned}
& H_{p, g .}^{r, s}(\Omega, E)=0 \text { for all } s \geq 1 \text { if } r=\operatorname{dim} M \\
& \left(\text { see } \delta 1 \text { for the definition of } H_{p . g . g}^{r, s}(\Omega, E)\right) \text { and } \\
& H_{p . g .}^{r, s}(\Omega, E)=0 \text { for all } r \text { and } s \text { with } r+s>\operatorname{dim} M \text { if } \operatorname{rank} E=1 .
\end{aligned}
$$

By Deligne-Maltsiniotis-Sasakura's comparison theorem asserting the equivalence of the cohomology of polynomial growth and algebraic cohomology on quasi-projective varieties, one has the following in particular.

Corollary 0.1. For any n-dimensional smooth projective variety X, for any Nakano positive vector bundle $E \rightarrow X$ and for any effective divisor D on X such that $\left.[D]\right|_{|D|} \geq 0$, the algebraic cohomology group $H_{\text {alg }}^{s}\left(X \backslash|D|, \Omega_{X}^{n}(E)\right)$ vanishes for $s \geq 1$, where Ω_{X}^{r} denotes the sheaf of holomorphic r forms. If moreover $\operatorname{rank} E=1, H_{\text {alg }}^{s}\left(X \backslash|D|, \Omega_{X}^{r}(E)\right)=0$ for $r+s>n$.

Here we mean by $\left.[D]\right|_{|D|} \geq 0$ that the line bundle $[D]$ admits a fiber metric whose curvature form is semipositive when it is restricted to the Zariski tangent spaces of $|D|$ (and no furhter semipositivity is assumed on the finite neighborhoods of $|D|)$.

We note that an analogous vanishing for $H^{s}\left(X, \Omega_{X}^{r}(\log D) \otimes L\right)$ was proved by Norimatsu $[\mathrm{N}]$ by combining Akizuki-Nakano's vanishing theorem and Deligne's filtration of $\Omega_{X}^{r}(\log D)$ in [D-1] by assuming that D is a divisor of simple normal crossings. Recently, a vanishing theorem for $H^{s}\left(X, \Omega_{X}^{r}(\log D)\right)$ was obtained by Liu, Wan and Yang in [L-W-Y] by combining a vanishing for $H_{\text {alg }}$ with [D-2] while the Norimatsu vanishing for $H^{s}\left(X, \Omega_{X}^{r}(\log D) \otimes L\right)$ was extended by Liu, Rao and Wan in $[\mathrm{L}-\mathrm{R}-\mathrm{W}]$ by the standard L^{2} method.

1. Cohomology with polynomial growth

After recalling the basic notations, $\bar{\partial}$ cohomology groups with polynomial growth will be defined.
Let M be a connected complex manifold equipped with a Hermitian metric g and let $E \rightarrow M$ be a holomorphic Hermitian vector bundle with a C^{∞} fiber metric h. For any continuous function $\varphi: M \rightarrow$ \mathbb{R}, we denote by $L_{(2)}^{r, s}\left(M, E, g, h e^{-\varphi}\right)$ the set of square integrable E valued (r, s)-forms with respect to $\left(g, h e^{-\varphi}\right)$. For simplicity we shall often abbreviate $L_{(2)}^{r, s}\left(M, E, g, h e^{-\varphi}\right)$ as $L_{(2), \varphi}^{r, s}(M, E)$. By $C^{r, s}(M, E)$ we denote the set of $C^{\infty}(r, s)$-forms on M with values in E and by

$$
\bar{\partial}: C^{r, s}(M, E) \rightarrow C^{r, s+1}(M, E)
$$

the complex exterior derivative of type $(0,1)$. We put

$$
C_{0}^{r, s}(M, E)=\left\{u \in C^{r, s}(M, E) ; \operatorname{supp} u \Subset M\right\}
$$

and denote also by $\bar{\partial}$ the maximal closed extension of $\left.\bar{\partial}\right|_{C_{0}^{r, s}(M, E)}$ as a linear operator from $L_{(2), \varphi}^{r, s}(M, E)$ to $L_{(2), \varphi}^{r, s+1}(M, E)$. Namely, the domain of the operator $\bar{\partial}: L_{(2), \varphi}^{r, s}(M, E) \rightarrow L_{(2), \varphi}^{r, s+1}(M, E)$ is defined as

$$
\left\{u \in L_{(2), \varphi}^{r, s}(M, E) ; \bar{\partial} u \in L_{(2), \varphi}^{r, s+1}(M, E)\right\}
$$

where $\bar{\partial} u$ is defined in the sense of distribution.
Then we put

$$
H_{(2)}^{r, s}\left(M, E, g, h e^{-\varphi}\right)=\frac{\operatorname{Ker} \bar{\partial} \cap L_{(2)}^{r, s}\left(M, E, g, h e^{-\varphi}\right)}{\bar{\partial}\left(L_{(2)}^{r, s-1}\left(M, E, g, h e^{-\varphi}\right)\right) \cap L_{(2)}^{r, s}\left(M, E, g, h e^{-\varphi}\right)} .
$$

Given a bounded domain $\Omega \Subset M$ we put

$$
\delta(z)=\delta_{\Omega}(z):=\operatorname{dist}_{g}(z, M \backslash \Omega) \quad(z \in \Omega)
$$

Here $\operatorname{dist}_{g}(A, B)$ denotes the distance between A and B with respect to g. Then $H_{p . g .}^{r, s}(\Omega, E)$, the E-valued $\bar{\partial}$ cohomology group of Ω of type (r, s) with polynomial growth, is defined as the inductive limit of $H_{(2)}^{r, s}\left(\Omega, E, g, h \delta^{\mu}\right)$ as $\mu \rightarrow \infty$. Clearly $H_{(2)}^{r, s}\left(\Omega, E, g, h \delta^{\mu}\right)$ and $H_{p . g .}^{r, s}(\Omega, E)$ do not depend on the choices of g and h.

The most basic fact on $H_{p . g .}^{r, s}(\Omega, E)$ is the following, which is a direct consequence of the combination of [H, Theorem 2.2.3] with Oka's lemma asserting the plurisubharmonicity of $\log \frac{1}{\delta_{\Omega}}$ for any pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$, with respect to the Euclidean metric. Although Theorem 2.2 .3 is only stated when E is the trivial bundle, the proof of the general case is similar.

Theorem 1.1. For any bounded pseudoconvex domain Ω in \mathbb{C}^{n} and for any holomorphic Hermitian vector bundle E on a neighborhood of $\bar{\Omega}$,

$$
H_{p . g .}^{r, s}(\Omega, E)=0 \text { for all } r \geq 0 \text { and } s \geq 1 .
$$

Based on Theorem 1.1, combining Cauchy's estimate with the canonical equivalence between Dolbeault and Čech cohomology, one has the following.

Theorem 1.2. For any smooth projective algebraic variety X, for any algebraic vector bundle $E \rightarrow X$ and for any analytic set $D \subset X$ of codimension one, $H_{p . g}^{r, s}(X \backslash D, E)$ is canonically isomorphic to the corresponding algebraic cohomology group $H_{\text {alg }}^{s}\left(X \backslash D, \Omega_{X}^{r}(E)\right)$ for any r and s.

We note that Theorem 1.2 is naturally extended to the equivalence between the cohomology groups $H_{p . g \text {. and }} H_{a l g}$ with coefficients in coherent algebraic sheaves over quasi-projective algebraic varieties (cf. [S]).

2. VAnishing of $H_{(2)}^{r, s}$

Let us recall a general vanishing theorem for those $H_{(2)}^{r, s}$ which arise in the circumstance of Theorem 0.1.

Let (E, h) be a holomorphic Hermitian vector bundle over a complex manifold M. Let Θ_{h} denote the curvature form of h. Recall that Θ_{h} is naturally identified with a Hermitian form along the fibers of $E \otimes T_{M}^{1,0}$, where $T_{M}^{1,0}$ denotes the holomorphic tangent bundle of M and that (E, h) is said to be Nakano positive if $\Theta_{h}>0$ as such a Hermitian form (cf. $[\mathrm{Nk}])$. If (E, h) is Nakano positive and $\operatorname{rank} E=1$, this positivity notion is first due to Kodaira [Kd]. For the proof of Theorem 0.1 we shall apply the following generalization of Nakano's vanishing theorem (cf. [Nk]) and Akizuki-Nakano's vanishing theorem (cf. [A-Nk]).
Theorem 2.1. (cf. [A-V]. See also $[\mathrm{Kz}]$.$) Let (E, h)$ be a Nakano positive vector bundle over a complete Kähler manifold (M, g) of dimension n. If $\Theta_{h}-I d_{E} \otimes g \geq 0$, then $H_{(2)}^{n, s}(M, E, g, h)=0$ holds for $s \geq 1$. If $\operatorname{rank} E=1$ and $\Theta_{h}=g$, one has $H_{(2)}^{r, s}(M, E, g, h)=0$ for $r+s>n$.

3. Proof of Theorem 0.1

Let Ω be a weakly pseudoconvex domain of very regular type in a complex manifold M and let (E, h) be a Hermitian holomorphic vector bundle over M whose curvature form Θ_{h} is Nakano positive. Since each component of $\partial \Omega$ is either a C^{2} real hypersurface or a divisor, there exist a function $\psi: M \rightarrow[0, \infty)$ of class C^{2} with $\psi^{-1}(0)=\partial \Omega$ and a positive number A such that $-\partial \bar{\partial} \log \psi+A \Theta_{\operatorname{det} h}>0$ holds on Ω, where $\partial \bar{\partial} \rho$ for a real-valued C^{2} function ρ is identified with the complex Hessian by an abuse of notation. For such a function ψ, one may take $|s|^{2}$ for a canonical section s of $[D]$ for any effective divisor D supported on $\partial_{\text {div }} \Omega$, on a neighborhood of $\partial_{\text {div }} \Omega$, and take ρ^{2} for a C^{2} defining function ρ of $\partial_{h y p} \Omega$, on a neighborhood of $\partial_{h y p} \Omega$.

If Ω is $U B S, \psi$ can be chosen in such a way that for any $\epsilon>0$ one can find a neighborhood U of $\partial_{d i v} \Omega$ such that

$$
-\partial \bar{\partial} \log \psi+\epsilon \Theta_{\operatorname{det} h}>0
$$

holds on $U \backslash \partial \Omega$. Moreover we are allowed to modify the metric $-\partial \bar{\partial} \log \psi+\epsilon \Theta_{\operatorname{det} h}$ near $\partial_{\text {div }} \Omega$ by adding a term $\partial \bar{\partial} \frac{1}{\log (-\log \psi)}$ so that it
becomes complete near $\partial_{\text {div }} \Omega$. This can be verified by a straightforward computation.

On the other hand, for any $\epsilon>0$ one can also find a neighborhood $V \supset \partial_{\text {hyp }} \Omega$ such that $-\partial \bar{\partial} \log \psi+\epsilon \Theta_{\text {det } h}$ is a metric on $V \cap \Omega$ which is complete near $\partial_{h y p} \Omega$. This follows immediately from the following lemma.

Lemma 3.1. Let Ω be a UBS domain in a Hermitian manifold (M, g) and let $\rho: M \rightarrow \mathbb{R}$ be a C^{3} function satisfying $\bar{\Omega}^{\circ}=\{z ; \rho(z)<0\}$ and $\left.d \rho\right|_{\partial_{\text {hyp }} \Omega} \neq 0$. Then for any $\epsilon>0$ there exists a neighborhood $U \supset \partial_{\text {hyp }} \Omega$ such that $-\rho^{-1} \partial \bar{\partial} \rho+\epsilon\left(g+\rho^{-2} \partial \rho \bar{\partial} \rho\right)>0$ holds on $U \cap \Omega$.

Proof For simplicity we assume that $\operatorname{dim} M=2$, since the proof is similar for the general case. Let $x \in \partial_{h y p} \Omega$ and let (z, w) be a local coordinate around x such that the Taylor expansion of ρ at x is given by

$$
\rho=\operatorname{Re} w+\rho_{2}+\rho_{3}+o(3),
$$

where $\rho_{k}=O(k)$.
We put

$$
\partial \bar{\partial} \rho_{2}=a d z d \bar{z}+b d z d \bar{w}+\bar{b} d w d \bar{z}+c d w d \bar{w} .
$$

If $a>0$, it is easy to see that, for any $\epsilon>0$ one can find a neighborhood $V \ni x$ such that $-\rho^{-1} \partial \bar{\partial} \rho+\epsilon\left(g+\rho^{-2} \partial \rho \bar{\partial} \rho\right)>0$ holds on $V \cap \Omega$.

Let us assume that $a=0$. Then it follows from $\partial \bar{\partial} \rho(0,0) \geq 0$ that $b=0$ and $c \geq 0$. Therefore, by letting

$$
\partial \bar{\partial} \rho=A d z d \bar{z}+B d z d \bar{w}+\bar{B} d w d \bar{z}+C d w d \bar{w}
$$

one sees that $A_{z}(0,0)=0$ and $A_{w}(0,0)=0$ should follow from $\partial \bar{\partial} \rho \geq$ $O\left(\rho^{2}\right)$ on a neighborhood of $\partial_{\text {hyp }} \Omega$. Hence, for any $\epsilon>0$ one can find a neighborhood $V \ni x$ such that $-\rho^{-1} \partial \bar{\partial} \rho+\epsilon\left(g+\rho^{-2} \partial \rho \bar{\partial} \rho\right)>0$ holds on $V \cap \Omega$. Hence, by the compactness of $\partial_{\text {hyp }} \Omega$ we have the desired conclusion.

Consequently we obtain the following, which is crucial for the L^{2} estimate needed for the proof of Theorem 0.1.

Lemma 3.2. If Ω is a $U B S$ domain, one can choose the above ψ in such a way that for any $\epsilon>0$ there exist a neighborhood $U \supset \partial \Omega$ such that

$$
I d_{E} \otimes \partial \bar{\partial}\left(-\log \psi+\frac{1}{\log (-\log \psi)}\right)+\epsilon \Theta_{h}>0
$$

on $U \cap \Omega$.

Proof of Theorem 0.1. Let ψ be as in Lemma 3.2. Then there exists an increasing sequence $\left(m_{\mu}\right) \in \mathbb{R}^{\mathbb{N}}$ such that

$$
I d_{E} \otimes \partial \bar{\partial}\left(-\mu \log \psi+\frac{1}{\log (-\log \psi)}\right)+\Theta_{h}>0
$$

holds on $\left\{x \in \Omega ; \psi(x) \leq e^{-m_{\mu}}\right\}$. We may assume that ψ is C^{∞} on Ω.
Therefore, one can find a C^{∞} function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\lambda(t)=t$ on $(-1,1)$, positive numbers a and C, and an increasing sequence of C^{∞} convex increasing functions $\lambda_{\mu}: \mathbb{R} \rightarrow \mathbb{R}(\mu \in \mathbb{N})$ such that $\lambda_{\mu}(t)=0$ if $t<m_{1}, \lambda_{\mu}(t)=\mu t$ if $t>m_{\mu+1}, \lambda_{\mu}(t)=\lambda_{\mu+1}(t)$ if $t<m_{\mu+1}$ and

$$
I d_{E} \otimes\left(\partial \bar{\partial}\left(\lambda_{\mu}(\log \psi)+a \lambda\left(\frac{1}{\log (-\log \psi+C)}\right)\right)\right)+\Theta_{h}>0
$$

on Ω.
Hence, for every $\mu \in \mathbb{N}$ one can find positive numbers ϵ_{μ} and δ_{μ} such that

$$
g_{\epsilon_{\mu}, \delta_{\mu}}:=\epsilon_{\mu} \partial \bar{\partial}\left(\lambda_{\mu}(\log \psi)+a \lambda\left(\frac{1}{\log (-\log \psi+C)}\right)\right)+\delta_{\mu} \Theta_{\operatorname{det} h}
$$

is a complete Kähler metric on Ω satisfying
$I d_{E} \otimes\left(\partial \bar{\partial}\left(\lambda_{\mu}(\log \psi)+a \lambda\left(\frac{1}{\log (-\log \psi+C)}\right)\right)\right)+\Theta_{h}>I d_{E} \otimes g_{\epsilon_{\mu}, \delta_{\mu}}$.
Therefore, by Theorem 2.1 we obtain
$H_{(2)}^{n, s}\left(\Omega, E, g_{\epsilon_{\mu}, \delta_{\mu}}, h \psi^{-\mu}\right)\left(\cong H_{(2)}^{n, s}\left(\Omega, E, g_{\epsilon_{\mu}, \delta_{\mu}}, h e^{-\lambda_{\mu}(\log \psi)}\right)\right)=0$ for $s \geq 1$, since $\lambda\left(\frac{1}{\log (-\log \psi+C)}\right)$ is bounded.

Now let $\mu \in \mathbb{N}$ and let v be any representative of an element of $H_{(2)}^{n, s}\left(\Omega, E, \Theta_{\operatorname{det} h, h \delta^{\mu}}\right)(s \geq 1)$. Then it is clear that one can find $\nu \geq \mu$ such that $v \in L_{(2)}^{n, s}\left(\Omega, E, g_{\epsilon_{\nu}, \delta_{\nu}}, h \psi^{-\nu}\right)$, so that by the above vanishing of $H_{(2)}^{n, s}\left(\Omega, E, g_{\epsilon_{\nu}, \delta_{\nu}}, h \psi^{-\nu}\right) \bar{\partial} u=v$ holds for some $u \in L_{(2)}^{n, s-1}\left(\Omega, E, g_{\epsilon_{\nu}, \delta_{\nu}}, h \psi^{-\nu}\right)$. Since

$$
L_{(2)}^{r, s}\left(\Omega, E, g_{\epsilon_{\nu}, \delta_{\nu}}, h \psi^{-\nu}\right) \subset \bigcup_{\kappa=1}^{\infty} L_{(2)}^{r, s}\left(\Omega, E, \Theta_{\operatorname{det} h}, h \delta^{\kappa}\right)
$$

it follows that v represents zero in $H_{p, g}^{n, s}(\Omega, E)$.
Similarly one has $H_{p . g .}^{r, s}(\Omega, E)=0$ if $\operatorname{rank} E=1$ and $r+s>n$.
Remark 3.1. If a complex manifold M is mapped onto a Stein space V by a holomorphic map f and (E, h) is a Nakano positive Hermitian holomorphic vector bundle over M, Theorem 0.1 can be generalized to a vanishing theorem on a locally pseudoconvex domain $\Omega \subset M$ such that $\partial \Omega$ consists of real hypersurfaces and divisors in such a way that
the restriction of f to them is proper, where the UBS condition is imposed similarly as in the case of bounded domains. As a corollary, one has the corresponding vanishing for the direct images of relatively algebraic sheaves. In case Ω is a smooth family over V with respect to f equipped with a divisor D for which $\left.f\right|_{D}$ is proper, it may be an interesting question to extend the theorems in $[\mathrm{L}-\mathrm{R}-\mathrm{W}]$ and $[\mathrm{L}-\mathrm{W}-\mathrm{Y}]$ to this situation.

References

[A-Nk] Akizuki, Y. and Nakano, S., Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266-272
[A-V] Andreotti, A. and Vesentini, E., Sopra un teorema di Kodaira, Ann. Scuola Norm. Sup. Pisa 15 (1961), 283-309.
[B-S] Boas, H. P. and Straube, E. J., Sobolev estimates for the $\bar{\partial}-$ Neumann operator on domains in \mathbb{C}^{n} admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), no. 1, 81-88.
[D-1] Deligne, P. Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Etudes Sci. Publ. Math. 35 (1968), 259-278.
[D-2] ——, Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. Publ. Math. 40 (1972), 5-57.
$[\mathrm{H}]$ Hörmander, L., L^{2} estimates and existence theorems for the $\bar{\partial}$-operator, Acta Math. 113 (1965), 89-152.
[Kz] Kazama, H., Approximation theorem and application to Nakano's vanishing theorem for weakly 1-complete manifolds, Mem. Fac. Sci. Kyushu Univ. 27 (1973), 221-240.
[Kd] Kodaira, K. On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U. S. A. 39, (1953). 1268-1273.
[K] Koike, T., Linearlization of transition functions of a semi-positive line bundle along a certain submanifold, arXiv:2002.07830 to appear in Ann. Inst. Fourier
[L-R-W] Liu, K., Rao, S. and Wan, X., Geometry of logarithmic forms and deformations of complex structures, J. Algebraic Geom. 28 (2019), no. 4, 773-815.
[L-W-Y] Liu, K.-F., Wan, X.-Y. and Yang, X.-K., Logarithmic vanishing theorems for effective q-ample divisors, Sci. China Math. 62 (2019), no. 11, 2331-2334.
[M] Maltsiniotis, G., G.A.G.A. affine (d'après Pierre Deligne) Différents aspects de la positivité, Sém. Géom. Anal., École Norm. Sup., 1972-1973, pp. 141-160. Astérisque, No. 17, Soc. Math. France, Paris, 1974.
[Nk] Nakano, S., On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1-12.
[Nk-R] Nakano, S. and Rhai, T.-S., Vector bundle version of Ohsawa's finiteness theorems, Math. Japon. 24 (1979/80), no. 6, 657-664.
[N] Norimatsu, Y., Kodaira vanishing theorem and Chern classes for ∂-manifolds, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), no. 4, 107-108.
[Oh-1] Ohsawa, T., Finiteness theorems on weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 853-870.
[Oh-2] ——, A remark on Hörmander's isomorphism, Complex analysis and geometry, 273-280, Springer Proc. Math. Stat., 144, Springer, Tokyo, 2015.
[Oh-3] ——, Variants of Hörmander's theorem on q-convex manifolds by a technique of infinitely many weights, Abhandlungen aus dem mathematischen Seminar der Universität Hamburg 2021 (online).
$[\mathrm{Oh}-4]-, L^{2} \bar{\partial}$-cohomology with weights and bundle convexity of certain locally pseudoconvex domains, preprint.
[Oh-5] ——, On weakly pseudoconvex domains of regular type - an approximation theorem, preprint.
[S] Sasakura, N., Cohomology with polynomial growth and completion theory, Publ. Res. Inst. Math. Sci. 17 (1981), no. 2, 371-552.
[U] Ueda, T., On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ. 22 (1982/83), no. 4, 583-607.

Takeo Ohsawa, Graduate School of Mathematics Nagoya University 464-8602 Chikusaku Furocho Nagoya Japan

Email address: ohsawa@math.nagoya-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 32E40; Secondary 32T05 .
 Key words and phrases. cohomology with polynomial growth, UBS domain, L^{2} $\bar{\partial}$-cohomology, vanishing theorem.

 The author thanks to Shigeru Takeuchi, Shin-ichi Matsumura and Tadasi Ashikaga for making useful comments. In particular, Matsumura brought the paper [L-R-W] under the author's attention.

