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Let (M,J) be a compact Kähler manifold.

Definition: A Hermitian metric g̃ on (M,J) is

a conformally Kähler, Einstein-Maxwell metric (cKEM metric for short)

if it satisfies the following three conditions:

(a) The scalar curvature sg̃ of g̃ is constant.

(b) There exists a positive smooth function f on M

such that g = f2g̃ is Kähler.

(c) The Hamiltonian vector field K = Jgradgf for f

is a Killing vector field for both g and g̃.

(Necessarily, K − iJK is a holomorphic vector field.)
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This may be considered as a “conformally Kähler Yamabe problem”.

If K = 0, i.e. f is a constant function then g is a Kähler metric of

constant scalar curvature. (Yau-Tian-Donaldson conjecture)

We start with a compact Kähler manifold M with fixed Kähler class and

fixed Killing vector field K in the Lie algebra of the maximal torus of the

automorphism group, and

search for g such that f−2
K g has constant scalar curvature, gradgfK = K.

“Conformally Einstein-Maxwell Kähler metric problem” :

View point taken by Apostolov-Maschler.

(Extended Yau-Tian-Donaldson conjecture)
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Examples of the conformally Kähler, Einstein metrics :

Page metric on the one-point-blow-up of CP2 (1978),

Chen-LeBrun-Weber on the two-point-blow-up of CP2 (2008).

Apostolov-Calderbank-Gauduchon on 4-orbifolds (2015),

Bérard-Bergery on P1-bundles over Fano Kähler-Einstein manifolds (1982).

Examples of non-Einstein cKEM examples :

LeBrun’s ambitoric examples on CP1 × CP1, the one-point-blow-up of

CP2, and Hirzebruch surfaces (2016),

Koca-Tϕnnesen-Friedman on ruled surfaces of higher genus (2016).
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Apostolov and Maschler initiated a study in the framework similar to

the Kähler geometry,

and set the existence problem of cKEM metrics in the Donaldson-Fujiki

picture.

In particular, fixing a Kähler class, they defined an obstruction to the

existence of cKEM metrics in a similar manner to the Kähler-Einstein

and cscK cases.

They further studied the toric surfaces and showed the equivalence be-

tween the existence of cKEM metrics and toric K-stability on toric sur-

faces with convex quadrilateral moment map images, extending earlier

works by Legendre and Donaldson.
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Futaki-Ono (JMSJ 2018, Outstanding Paper Prize) studied

for which Killing vector field K we can find a cKEM metric.

We showed that, fixing a Kähler class, such Killing vector fields are

critical points of certain volume functional.

We also showed that, for toric manifolds, this idea gives an efficient way

to decide which vector fields in the Lie algebra of the torus can

have a solution of the cKEM problem.

The idea is similar to the cases of Kähler-Ricci solitons and Sasaki-

Einstein metrics.
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A Kähler-Ricci soliton is a Kähler metric with its Kähler form ω ∈ c1(M)

such that there exists a Killing Hamiltonian vector field

X ∈ h,

the Lie algebra of the maximal torus of the automorphism group,

satisfying

Ricω = ω + LJXω

= ω + i∂∂fX .

Find out, for which X, there is a Kähler form ω satisfying the Kähler-

Ricci soliton equation.
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Let g be an arbitrary Kähler metric with its Kähler class ωg ∈ c1(M), and

let hg be a smooth function such that

Ricg − ωg = i∂∂hg.

Tian and Zhu (2002) defined a functional FutX : g → R by

FutX(Y ) =
∫
M
(JY )(hg − fX)efXωm

g

where fX is the Hamiltonian function of X with the normalization∫
M

efXωm
g =

∫
M

ωm
g .

FutX is independent of the choice of ωg ∈ c1(M), and if there exists a

Kähler-Ricci soliton for X then FutX vanishes identically.
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To find such X with vanishing FX, they considered the weighted volume

functional V : g → R defined by

V (Z) =
∫
M

euZωm
g

where uZ is the Hamiltonian function of Z ∈ g with the the normalization∫
M

uZe
hgωm

g = 0.

Tian and Zhu showed that

- V (X) is independent of ωg,

- dVX(Y ) = cFutX(Y ) with a constant c,

- V is a strictly convex proper function,

- there is a unique minimum X.

This minimum X is the right choice to solve the Kähler-Ricci

soliton equation.
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A similar story holds for the Sasaki-Einstein metrics. Martell-Sparks-Yau

(2008).

Let S be a toric Sasaki manifold, i.e. its Kähler cone C(S) is toric.

The deformation space of the toric Sasaki structure is described by a

subspace H in the Lie algebra g of the torus consisting of Reeb vector

fields. That is, a deformation of Sasaki structure corresponds to a

deformation of the Reeb vector field.

Let V : H → R be the volume functional of the space of Sasaki manifolds.

The derivative of dVξ : g0(= TξH) → R is equal to the natural obstruction

for the existence of Sasaki-Einstein metric.

Since V is strictly convex and proper on H, there is a unique minimum.

This is the right choice of the Reeb vector field to look for a Sasaki-

Einstein metric.
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Let us turn to our cKEM problem.

Let G be a maximal torus of a maximal reductive subgroup of the auto-

morphism group,

and take K ∈ g := Lie(G).

Let ω0 be a Kähler form, and Ω = [ω0] ∈ H2
DR(M,R) be a fixed Kähler

class.

We wish to find a G-invariant Kähler metric g with its Kähler form ωg ∈ Ω

such that

(i) g̃ = f−2g is a cKEM metric,

(ii) Jgradgf = K.
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But we need to know whether we have chosen the right K ∈ g.

If we have chosen a wrong one we will never get to a cKEM metric.

The right one has to have vanishing obstruction.

Denote by KG
Ω the space of G-invariant Kähler metrics g with ωg ∈ Ω.

For any (K, a, g) ∈ g × R × KG
Ω, there exists a unique function fK,a,g ∈

C∞(M,R) satisfying the following two conditions:

ιK ωg = dfK,a,g,
∫
M

fK,a,g
ωm
g

m!
= a.
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Noting min{fK,a,g(x) |x ∈ M} is independent of g with ωg ∈ Ω, we put

PG
Ω := {(K, a) ∈ g×R | fK,a,g > 0},

HG
Ω :=

{
g̃K,a = f−2

K,a,gg

∣∣∣∣ (K, a) ∈ PG
Ω, g ∈ KG

Ω

}
.

Fixing (K, a) ∈ PG
Ω , put

HG
Ω,K,a := {g̃K,a | g ∈ KG

Ω}.
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Hereafter the Kähler metric g and its Kähler form ωg are often identified,

and ωg is often denoted by ω. Put

cΩ,K,a :=

∫
M

sg̃K,a
f−2m−1
K,a,g

ωm

m!∫
M

f−2m−1
K,a,g

ωm

m!

,

dΩ,K,a :=

∫
M

sg̃K,a
f−2m
K,a,g

ωm

m!∫
M

f−2m
K,a,g

ωm

m!

.

Then dΩ,K,a, cΩ,K,a are constants independent of the choice of g ∈ KG
Ω

as shown by Apostolov-Maschler.
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Then

FG
Ω,K,a : g → R

defined by

FG
Ω,K,a(H) :=

∫
M

sg̃K,a
− cΩ,K,a

f2m+1
K,a,g

 fH,b,g
ωm

m!

is a linear function independent of the choice of (g, b) ∈ KG
Ω ×R.

(Apostolov-Maschler)

If there exists a constant scalar curvature metric in HΩ,K,a, then FG
Ω,K,a

is identically zero.
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Let us put further

P̃G
Ω :=

{
(K, a) ∈ PG

Ω

∣∣∣∣ dΩ,K,a = 1
}
.

Consider the volume functional

Vol : P̃G
Ω → R

given by

Vol(K, a) := Vol(g̃K,a)

for (K, a) ∈ P̃G
Ω.
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The main result is the following volume minimization property of cKEM

metrics.

Main Theorem:

Let (K, a) ∈ P̃G
Ω :=

{
(K, a) ∈ PG

Ω

∣∣∣∣ dΩ,K,a = 1
}
.

Then if there exists a conformally Kähler, Einstein-Maxwell metric

g̃K,a ∈ HG
Ω,K,a

then (K, a) is a critical point of

Vol : P̃G
Ω → R.

In fact,

dVol(K,a) = const FG
Ω,K,a.
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A merit of the Main Theorem is to give a systematic computation of

FG
Ω,K,a.

We use Maxima to compute FG
Ω,K,a of CP1 ×CP1, the blow-up of CP2

at one point and other Hirzebruch surfaces.

The case of the one point blow up of CP2 Let ∆p be the convex

hull of (0,0), (p,0), (p,1− p), (0,1), (0 < p < 1).

An affine linear function f = aµ1 + bµ2 + c is positive on ∆p if and only

if

c, b+ c, (1− p)b+ pa+ c, pa+ c > 0.
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(1) a = p+2
√
1−p−2

2p2
, b = 0,0 < p < 1. U(2)-symmetry, LeBrun case.

(2) a = −
√

9p2−8p+p
4p2

, b = 0. 8
9 < p < 1, U(2)-symmetry, LeBrun case.

(3) a =
√

9p2−8p−p
4p2

, b = 0. 8
9 < p < 1, U(2)-symmetry, LeBrun case.

(4) a = −
√

p4−4p3+16p2−16p+4−p2+4p−2
2p3−4p2+12p−8

, b = −
√

p4−4p3+16p2−16p+4
p3−2p2+6p−4

.

0 < p < α, U(1)× U(1)-symmtery. Existence unknow.

(5) a =
√

p4−4p3+16p2−16p+4+p2−4p+2
2p3−4p2+12p−8

, b =
√

p4−4p3+16p2−16p+4
p3−2p2+6p−4

.

0 < p < α, U(1)× U(1)-symmtery. Existence unknow.

Here, α is the smallest positive root of p4 − 4p3 +16p2 − 16p+4 = 0.
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(6) a =
2
√

−9b2p3+
(
21b2+1

)
p2+

(
1−16b2

)
p+4b2−1+3bp2+(1−2b)p

6p2−4p
.

U(1)× U(1)-symmtery. Existence unknown.

(7) a = −
2
√

−9b2p3+
(
21b2+1

)
p2+

(
1−16b2

)
p+4b2−1−3bp2+(2b−1)p

6p2−4p
.

U(1)× U(1)-symmtery. Existence unknown.

For (4) and (5), numerical proof of existence has been given

by Futaki-Ono arXiv:1803.06801 by checking toric K-stability.
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Theorem (Viza de Souza, Ann. Global. Anal. Geom. 2021)

(A) There are solutions for (4) and (5).

(B) There are no solutions for (6) and (7).
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Definition: Let ∆ be a polytope in Rm containing the origin and f a

positive affine linear function on ∆. The f-twist ∆̃ := T (∆) of ∆ is the

image of T : Rm → Rm where

T (x) = x̃ =
x

f(x)
.

Lemma : If ϕ(x) is an affine linear function of x, then ϕ̃(x̃) := ϕ(x)
f(x) is an

affine function of x̃.

If (∆,L = {L1, · · · , Ld}) is a labelled polytope, i.e.

∆ = {x ∈ t∗ | Li(x) ≥ 0, i = 1, · · · , d},

then (∆̃, L̃ = {L̃1, · · · , L̃d}), L̃i(x̃) = Li(x)/f(x) is a labelled polytope.

Put f̃(x̃) := 1/f(x). Then f̃-twist of ∆̃ recovers ∆.
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Lemma : If u is a symplectic potential of (∆,L), then ũ is a symplectic
potential of (∆̃, L̃).

Theorem (Apostolov-Calderbank, arXiv:1810) : (∆, u) corresponds to an
extramal Kähler metric if and only if (∆̃, ũ) corresponds to an (f,m+2)-
extremal metirc for gũ, where the (f, w)-scalar curvature for a Kähler
metric g is

Scal(f,w)(g) = f2Scal(g)− 2(w − 1)f∆gf − w(w − 1)|df |2g ,

and (f,m+2)-scalar curvature for gũ is a Killing potential.

Fact ; For m = 2, the scalar curvature of f−2g is equal to Scal(f,4)(g).

Corollary : For m = 2, if (∆, u) corresponds to an extramal Kähler metric
then (∆̃, ũ) corresponds to a conformally Kähler, Einstein-Maxwell metric
provided the Futaki invariant vanishes.

Remark : This corollary has been observed by Apostolov-Maschler.
Remrak : The above Theorem of Apostolov-Calderbank is more gen-
eral, and expressed in terms of transverse Kähler structures on Sasakian
manifolds.
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Thus we only need to check the f̃-twist of cKEM metric is extremal or

not.

Theorem (Legendre, 2011) : A quadrilateral in R2 corresponds to an

extremal metric if and only if it is equipoised, i.e. if the vertices of the

quadrilateral is v1, v2, v3, v4 in the natural order, then the L2-projection

ζ of the scalar curvature to the space of Killing potentials satisfy

ζ(v1) + ζ(v3) = ζ(v2) + ζ(v4).

Proof of Viza de Souza : The f̃-twist of (4) (resp. (5)) is equipoised.

Thus it is extremal Kähler. Hence (4) (resp. (5)) is cKEM. In the case

of (6) and (7) f can not be positive on the quadrilateral. Thus there is

no solution.
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Let µ : M → t∗ be the moment map.

Def ( Lahdili ) : For positive v, w ∈ C∞(∆), we define the (v, w)-scalar

curvature by

Scal(v,w) = w−1

v(µ)Scal+2∆v(µ) +
∑
i,j

vij(µ)


where vij denotes the Hessian with respect to an orthonormal basis of

t∗.
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Example : When v(µ) = f−2m+1 and w(µ) = f−2m−1, a constant (v, w)-

scalar curvature metric is a conformally Kähler, Einstein-Maxwell metric.

Example (Eiji Inoue) : When M is Fano, v = e<ξ,p> for ξ ∈ t, w =

v(< ξ, p > +c), then a constant (v, w)-scalar curvature metric a gradient

Kähler-Ricci soliton, where Jξ is the soliton vector field.

=⇒ Fujiki-Donaldson picture for Kähler-Ricci solitons

=⇒ moduli theory for Kähler-Ricci solitons


