Conformally Kähler, Einstein-Maxwell metrics (after Isaque Viza de Souza)

> Akito Futaki Tsinghua University Yau Mathematical Sciences Center

The 27th Symposium on Complex Geometry Osaka University, November 1–4, 2021 Let (M, J) be a compact Kähler manifold.

Definition: A Hermitian metric \tilde{g} on (M, J) is a <u>conformally Kähler</u>, Einstein-Maxwell metric (<u>cKEM metric</u> for short) if it satisfies the following three conditions:

(a) The scalar curvature $s_{\tilde{q}}$ of \tilde{g} is constant.

(b) There exists a positive smooth function f on M such that $g = f^2 \tilde{g}$ is Kähler.

(c) The Hamiltonian vector field $K = J \text{grad}_g f$ for f is a Killing vector field for both g and \tilde{g} . (Necessarily, K - iJK is a holomorphic vector field.) This may be considered as a "conformally Kähler Yamabe problem".

If K = 0, i.e. f is a constant function then g is a Kähler metric of constant scalar curvature. (Yau-Tian-Donaldson conjecture)

We start with a compact Kähler manifold M with fixed Kähler class and fixed Killing vector field K in the Lie algebra of the maximal torus of the automorphism group, and search for g such that $f_K^{-2}g$ has constant scalar curvature, $\operatorname{grad}_g f_K = K$. **"Conformally Einstein-Maxwell Kähler metric problem"** : View point taken by Apostolov-Maschler.

(Extended Yau-Tian-Donaldson conjecture)

Examples of the conformally Kähler, Einstein metrics :

Page metric on the one-point-blow-up of CP^2 (1978),

Chen-LeBrun-Weber on the two-point-blow-up of CP^2 (2008).

Apostolov-Calderbank-Gauduchon on 4-orbifolds (2015),

Bérard-Bergery on P^1 -bundles over Fano Kähler-Einstein manifolds (1982).

Examples of non-Einstein cKEM examples :

LeBrun's ambitoric examples on $\mathbf{CP}^1 \times \mathbf{CP}^1$, the one-point-blow-up of \mathbf{CP}^2 , and Hirzebruch surfaces (2016),

Koca-T ϕ nnesen-Friedman on ruled surfaces of higher genus (2016).

Apostolov and Maschler initiated a study in the framework similar to the Kähler geometry,

and set the existence problem of cKEM metrics in the **Donaldson-Fujiki** picture.

In particular, fixing a Kähler class, they defined an **obstruction to the existence of cKEM metrics** in a similar manner to the Kähler-Einstein and cscK cases.

They further studied the toric surfaces and showed the equivalence between the existence of cKEM metrics and toric K-stability on toric surfaces with <u>convex quadrilateral moment map images</u>, extending earlier works by Legendre and Donaldson. Futaki-Ono (JMSJ 2018, Outstanding Paper Prize) studied for which Killing vector field K we can find a cKEM metric.

We showed that, fixing a Kähler class, such Killing vector fields are critical points of certain **volume functional**.

We also showed that, for toric manifolds, this idea gives an efficient way to decide which vector fields in the Lie algebra of the torus can have a solution of the cKEM problem.

The idea is similar to the cases of **Kähler-Ricci solitons** and **Sasaki-Einstein metrics**.

A Kähler-Ricci soliton is a Kähler metric with its Kähler form $\omega \in c_1(M)$

such that there exists a Killing Hamiltonian vector field $X \in \mathfrak{h}$, the Lie algebra of the maximal torus of the automorphism group, satisfying

$$\operatorname{Ric}_{\omega} = \omega + L_{JX}\omega$$
$$= \omega + i\partial\overline{\partial}f_X.$$

Find out, for which X, there is a Kähler form ω satisfying the Kähler-Ricci soliton equation. Let g be an arbitrary Kähler metric with its Kähler class $\omega_g \in c_1(M)$, and let h_q be a smooth function such that

$$\operatorname{Ric}_g - \omega_g = i \partial \overline{\partial} h_g.$$

Tian and Zhu (2002) defined a functional $\operatorname{Fut}_X : \mathfrak{g} \to \mathbf{R}$ by

$$\operatorname{Fut}_X(Y) = \int_M (JY)(h_g - f_X)e^{f_X}\omega_g^m$$

where f_X is the Hamiltonian function of X with the normalization

$$\int_M e^{f_X} \omega_g^m = \int_M \omega_g^m.$$

Fut_X is independent of the choice of $\omega_g \in c_1(M)$, and if there exists a Kähler-Ricci soliton for X then Fut_X vanishes identically.

To find such X with vanishing F_X , they considered the **weighted volume** functional $V : \mathfrak{g} \to \mathbf{R}$ defined by

$$V(Z) = \int_M e^{u_Z} \omega_g^m$$

where u_Z is the Hamiltonian function of $Z \in \mathfrak{g}$ with the the normalization

$$\int_M u_Z e^{h_g} \omega_g^m = 0.$$

Tian and Zhu showed that

- V(X) is independent of ω_g ,
- $dV_X(Y) = c \operatorname{Fut}_X(Y)$ with a constant c,
- \boldsymbol{V} is a strictly convex proper function,
- there is a unique minimum X.

This minimum X is the right choice to solve the Kähler-Ricci soliton equation.

A similar story holds for the Sasaki-Einstein metrics. Martell-Sparks-Yau (2008).

Let S be a toric Sasaki manifold, i.e. its Kähler cone C(S) is toric.

The deformation space of the toric Sasaki structure is described by a subspace H in the Lie algebra \mathfrak{g} of the torus consisting of Reeb vector fields. That is, a deformation of Sasaki structure corresponds to a deformation of the Reeb vector field.

Let $V : H \to \mathbf{R}$ be the volume functional of the space of Sasaki manifolds.

The derivative of dV_{ξ} : $\mathfrak{g}_0(=T_{\xi}H) \to \mathbf{R}$ is equal to the natural obstruction for the existence of Sasaki-Einstein metric.

Since V is strictly convex and proper on H, there is a unique minimum. This is the right choice of the Reeb vector field to look for a Sasaki-Einstein metric. Let us turn to our cKEM problem.

Let G be a maximal torus of a maximal reductive subgroup of the automorphism group,

and take $K \in \mathfrak{g} := \operatorname{Lie}(G)$.

Let ω_0 be a Kähler form, and $\Omega = [\omega_0] \in H^2_{DR}(M, \mathbb{R})$ be a fixed Kähler class.

We wish to find a G-invariant Kähler metric g with its Kähler form $\omega_g \in \Omega$ such that

(i) $\tilde{g} = f^{-2}g$ is a cKEM metric,

(ii) $J \operatorname{grad}_g f = K$.

But we need to know whether we have chosen the right $K \in \mathfrak{g}$.

If we have chosen a wrong one we will never get to a cKEM metric.

The right one has to have vanishing obstruction.

Denote by \mathcal{K}^G_{Ω} the space of *G*-invariant Kähler metrics *g* with $\omega_g \in \Omega$.

For any $(K, a, g) \in \mathfrak{g} \times \mathbf{R} \times \mathcal{K}_{\Omega}^{G}$, there exists a unique function $f_{K,a,g} \in C^{\infty}(M, \mathbf{R})$ satisfying the following two conditions:

$$\iota_K \omega_g = df_{K,a,g}, \quad \int_M f_{K,a,g} \; \frac{\omega_g^m}{m!} = a.$$

Noting $\min\{f_{K,a,g}(x) \mid x \in M\}$ is independent of g with $\omega_g \in \Omega$, we put

$$\mathcal{P}_{\Omega}^{G} := \{ (K, a) \in \mathfrak{g} \times \mathbf{R} \mid f_{K, a, g} > 0 \}, \\ \mathcal{H}_{\Omega}^{G} := \left\{ \tilde{g}_{K, a} = f_{K, a, g}^{-2} g \mid (K, a) \in \mathcal{P}_{\Omega}^{G}, g \in \mathcal{K}_{\Omega}^{G} \right\}.$$

Fixing $(K,a) \in P_{\Omega}^{G}$, put

$$\mathcal{H}_{\Omega,K,a}^G := \{ \tilde{g}_{K,a} \, | \, g \in \mathcal{K}_{\Omega}^G \}.$$

Hereafter the Kähler metric g and its Kähler form ω_g are often identified, and ω_g is often denoted by ω . Put

$$c_{\Omega,K,a} := \frac{\int_{M} s_{\tilde{g}_{K,a}} f_{K,a,g}^{-2m-1} \frac{\omega^{m}}{m!}}{\int_{M} f_{K,a,g}^{-2m-1} \frac{\omega^{m}}{m!}},$$
$$d_{\Omega,K,a} := \frac{\int_{M} s_{\tilde{g}_{K,a}} f_{K,a,g}^{-2m} \frac{\omega^{m}}{m!}}{\int_{M} f_{K,a,g}^{-2m} \frac{\omega^{m}}{m!}}.$$

Then $d_{\Omega,K,a}$, $c_{\Omega,K,a}$ are constants independent of the choice of $g \in \mathcal{K}_{\Omega}^{G}$ as shown by Apostolov-Maschler.

Then

$$F^G_{\Omega,K,a} : \mathfrak{g} \to \mathbf{R}$$

defined by

$$F_{\Omega,K,a}^G(H) := \int_M \left(\frac{s_{\tilde{g}_{K,a}} - c_{\Omega,K,a}}{f_{K,a,g}^{2m+1}}\right) f_{H,b,g} \frac{\omega^m}{m!}$$

is a linear function independent of the choice of $(g, b) \in \mathcal{K}_{\Omega}^G \times \mathbf{R}$. (Apostolov-Maschler)

If there exists a constant scalar curvature metric in $\mathcal{H}_{\Omega,K,a}$, then $F_{\Omega,K,a}^G$ is identically zero.

Let us put further

$$\tilde{\mathcal{P}}_{\Omega}^{G} := \left\{ (K, a) \in \mathcal{P}_{\Omega}^{G} \, \middle| \, d_{\Omega, K, a} = 1 \right\}.$$

Consider the volume functional

$$\mathsf{Vol}: \tilde{\mathcal{P}}_{\Omega}^G \to \mathbf{R}$$

given by

$$Vol(K,a) := Vol(\tilde{g}_{K,a})$$

for $(K, a) \in \tilde{\mathcal{P}}_{\Omega}^{G}$.

The main result is the following volume minimization property of cKEM metrics.

Main Theorem:

Let
$$(K, a) \in \tilde{\mathcal{P}}_{\Omega}^{G} := \left\{ (K, a) \in \mathcal{P}_{\Omega}^{G} \, \middle| \, d_{\Omega, K, a} = 1 \right\}.$$

Then if there exists a conformally Kähler, Einstein-Maxwell metric $\tilde{g}_{K,a} \in \mathcal{H}^G_{\Omega,K,a}$

then (K, a) is a critical point of

Vol :
$$\tilde{\mathcal{P}}_{\Omega}^{G} \to \mathbf{R}$$
.

In fact,

$$d\operatorname{Vol}_{(K,a)} = \operatorname{const} F_{\Omega,K,a}^G.$$

A merit of the Main Theorem is to give a systematic computation of $F^G_{\Omega,K,a}.$

We use Maxima to compute $F_{\Omega,K,a}^G$ of $\mathbb{CP}^1 \times \mathbb{CP}^1$, the blow-up of \mathbb{CP}^2 at one point and other Hirzebruch surfaces.

The case of the one point blow up of CP^2 Let Δ_p be the convex hull of (0,0), (p,0), (p,1-p), (0,1), (0

An affine linear function $f = a\mu_1 + b\mu_2 + c$ is positive on Δ_p if and only if

$$c, b + c, (1 - p)b + pa + c, pa + c > 0.$$

(1)
$$a = \frac{p+2\sqrt{1-p}-2}{2p^2}, b = 0, 0 U(2)-symmetry, LeBrun case.$$

(2)
$$a = -\frac{\sqrt{9p^2 - 8p} + p}{4p^2}, b = 0. \frac{8}{9} -symmetry, LeBrun case.$$

(3)
$$a = \frac{\sqrt{9p^2 - 8p - p}}{4p^2}, b = 0. \frac{8}{9} -symmetry, LeBrun case.$$

(4)
$$a = -\frac{\sqrt{p^4 - 4p^3 + 16p^2 - 16p + 4} - p^2 + 4p - 2}{2p^3 - 4p^2 + 12p - 8}, b = -\frac{\sqrt{p^4 - 4p^3 + 16p^2 - 16p + 4}}{p^3 - 2p^2 + 6p - 4}.$$

 $0 -symmetry. Existence unknow.$

(5)
$$a = \frac{\sqrt{p^4 - 4p^3 + 16p^2 - 16p + 4} + p^2 - 4p + 2}{2p^3 - 4p^2 + 12p - 8}, b = \frac{\sqrt{p^4 - 4p^3 + 16p^2 - 16p + 4}}{p^3 - 2p^2 + 6p - 4}.$$

 $0 -symmetry. Existence unknow.$

Here, α is the smallest positive root of $p^4 - 4p^3 + 16p^2 - 16p + 4 = 0$.

(6)
$$a = \frac{2\sqrt{-9b^2p^3 + (21b^2 + 1)p^2 + (1 - 16b^2)p + 4b^2 - 1 + 3bp^2 + (1 - 2b)p}}{6p^2 - 4p}$$

 $U(1) \times U(1)$ -symmtery. Existence unknown.

(7)
$$a = -\frac{2\sqrt{-9b^2p^3 + (21b^2 + 1)p^2 + (1 - 16b^2)p + 4b^2 - 1} - 3bp^2 + (2b - 1)p}{6p^2 - 4p}$$

 $U(1) \times U(1)$ -symmetry. Existence unknown.

For (4) and (5), numerical proof of existence has been given by Futaki-Ono arXiv:1803.06801 by checking toric K-stability. Theorem (Viza de Souza, Ann. Global. Anal. Geom. 2021)

(A) There are solutions for (4) and (5).

(B) There are no solutions for (6) and (7).

Definition: Let Δ be a polytope in \mathbb{R}^m containing the origin and f a positive affine linear function on Δ . The f-twist $\widetilde{\Delta} := T(\Delta)$ of Δ is the image of $T : \mathbb{R}^m \to \mathbb{R}^m$ where

$$T(x) = \tilde{x} = \frac{x}{f(x)}$$

Lemma : If $\phi(x)$ is an affine linear function of x, then $\tilde{\phi}(\tilde{x}) := \frac{\phi(x)}{f(x)}$ is an affine function of \tilde{x} .

If $(\Delta, \mathbf{L} = \{L_1, \dots, L_d\})$ is a labelled polytope, i.e.

$$\Delta = \{ x \in \mathfrak{t}^* \mid L_i(x) \ge 0, \ i = 1, \cdots, d \},\$$

then $(\widetilde{\Delta}, \widetilde{\mathbf{L}} = \{\widetilde{L}_1, \cdots, \widetilde{L}_d\})$, $\widetilde{L}_i(\widetilde{x}) = L_i(x)/f(x)$ is a labelled polytope.

Put $\tilde{f}(\tilde{x}) := 1/f(x)$. Then \tilde{f} -twist of $\tilde{\Delta}$ recovers Δ .

Lemma : If u is a symplectic potential of (Δ, \mathbf{L}) , then \tilde{u} is a symplectic potential of $(\widetilde{\Delta}, \widetilde{\mathbf{L}})$.

Theorem (Apostolov-Calderbank, arXiv:1810) : (Δ, u) corresponds to an extramal Kähler metric if and only if $(\widetilde{\Delta}, \widetilde{u})$ corresponds to an (f, m+2)-extremal metric for $g_{\widetilde{u}}$, where the (f, w)-scalar curvature for a Kähler metric g is

$$Scal_{(f,w)}(g) = f^2 Scal(g) - 2(w-1)f\Delta_g f - w(w-1)|df|_g^2$$

and (f, m + 2)-scalar curvature for $g_{\tilde{u}}$ is a Killing potential.

Fact ; For m = 2, the scalar curvature of $f^{-2}g$ is equal to $Scal_{(f,4)}(g)$.

Corollary : For m = 2, if (Δ, u) corresponds to an extramal Kähler metric then $(\widetilde{\Delta}, \widetilde{u})$ corresponds to a conformally Kähler, Einstein-Maxwell metric provided the Futaki invariant vanishes.

Remark : This corollary has been observed by Apostolov-Maschler. Remrak : The above Theorem of Apostolov-Calderbank is more general, and expressed in terms of transverse Kähler structures on Sasakian manifolds. Thus we only need to check the \tilde{f} -twist of cKEM metric is extremal or not.

Theorem (Legendre, 2011) : A quadrilateral in \mathbb{R}^2 corresponds to an extremal metric if and only if it is equipoised, i.e. if the vertices of the quadrilateral is v_1, v_2, v_3, v_4 in the natural order, then the L^2 -projection ζ of the scalar curvature to the space of Killing potentials satisfy

$$\zeta(v_1) + \zeta(v_3) = \zeta(v_2) + \zeta(v_4).$$

Proof of Viza de Souza : The \tilde{f} -twist of (4) (resp. (5)) is equipoised. Thus it is extremal Kähler. Hence (4) (resp. (5)) is cKEM. In the case of (6) and (7) f can not be positive on the quadrilateral. Thus there is no solution. Let $\mu: M \to \mathfrak{t}^*$ be the moment map.

Def (Lahdili) : For positive $v, w \in C^{\infty}(\Delta)$, we define the (v, w)-scalar curvature by

$$Scal_{(v,w)} = w^{-1} \left(v(\mu)Scal + 2\Delta v(\mu) + \sum_{i,j} v_{ij}(\mu) \right)$$

where v_{ij} denotes the Hessian with respect to an orthonormal basis of \mathfrak{t}^* .

Example : When $v(\mu) = f^{-2m+1}$ and $w(\mu) = f^{-2m-1}$, a constant (v, w)-scalar curvature metric is a conformally Kähler, Einstein-Maxwell metric.

Example (Eiji Inoue) : When M is Fano, $v = e^{\langle \xi, p \rangle}$ for $\xi \in \mathfrak{t}$, $w = v(\langle \xi, p \rangle + c)$, then a constant (v, w)-scalar curvature metric a gradient Kähler-Ricci soliton, where $J\xi$ is the soliton vector field.

 \implies Fujiki-Donaldson picture for Kähler-Ricci solitons

 \implies moduli theory for Kähler-Ricci solitons