# A conical approximation of constant scalar curvature Kähler metrics of Poincaré type and $\log$ K-semistability 

Takahiro Aoi<br>Osaka Prefectural Abuno High school

The 28th Symposium on Complex Geometry (Kanazawa) 10th November 2022

## Outline

(1) Background (Kähler-Einstein case)
(2) Conical approximation (Differential Geometry)
(3) $\log$ K-stability (Algebraic Geometry)

1. Background (Kähler-Einstein case)

## Kähler metric and curvature

$X$ : $n$-dimensional complex manifold
$\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ : local holomorphic coordinates

## Definition (Kähler metric)

A Kähler metric $\omega$ is a closed positive $(1,1)$ form on $X$.

$$
\omega=\sqrt{-1} \sum_{i, j} g_{i \bar{j}} d z^{i} \wedge d \overline{z^{j}}, \quad\left(g_{i \bar{j}}\right)_{i, j}>0
$$

Definition (Ricci form and scalar curvature)
The Ricci form of $\omega$ is defined by

$$
\operatorname{Ric}(\omega)=-\sqrt{-1} \partial \bar{\partial} \log \operatorname{det}\left(g_{i \bar{j}}\right)_{i, j} \in c_{1}(X)=c_{1}\left(-K_{X}\right)
$$

The scalar curvature of $\omega$ is defined by

$$
S(\omega)=\operatorname{tr}_{\omega} \operatorname{Ric}(\omega) \in C^{\infty}(X, \mathbb{R})
$$

## cscK metrics

## Definition

$\omega$ is a constant scalar curvature Kähler ( $\operatorname{cscK}$ ) metric if its scalar curvature is constant, i.e.,

$$
S(\omega)=\text { const. }
$$

ex.

- constant curvature metric on Riemann surface
- Kähler-Einstein metric

$$
\exists \lambda \in \mathbb{R} \text { s.t. } \operatorname{Ric}(\omega)=\lambda \omega
$$

## Main problem

Let $\left(X, L_{X}\right)$ be a pair of a compact Kähler manifold $X$ and an ample line bundle $L_{X}$. Let $D$ be a smooth divisor.

## Problem

Does there exists a cscK metric on $X \backslash D$ with some singularities? Namely, solve the forth order nonlinear PDE on $X \backslash D$ :

$$
S(\omega+\sqrt{-1} \partial \bar{\partial} \phi)=\text { const }, \quad \phi \in C^{4, \alpha}(X \backslash D)
$$

On local holomorphic coordinates,

$$
\left\{\begin{aligned}
S(\omega+\sqrt{-1} \partial \bar{\partial} \phi) & =-g_{\phi}^{i \bar{j}} \partial_{i} \partial_{\bar{j}} \log \operatorname{det}\left(g_{k \bar{l}}+\phi_{k \bar{l}}\right)=\text { const } \\
\omega+\sqrt{-1} \partial \bar{\partial} \phi & =\sqrt{-1}\left(g_{i \bar{j}}+\phi_{i \bar{j}}\right) d z^{i} \wedge d \bar{z}^{j}>0 .
\end{aligned}\right.
$$

## Kähler-Einstein metrics with negative Ricci curvature

Theorem (Kobayashi '84, Tian-Yau '87) If $K_{X}+D$ is ample, there exists a unique Kähler-Einstein metric $\omega \in c_{1}\left(K_{X}+D\right)$ with Poincaré type singularities along $D$ such that

$$
\operatorname{Ric} \omega=-\omega \quad \text { on } X \backslash D
$$

## Theorem <br> (Jeffres-Mazzeo-Rubinstein'11,Campana-Guenancia-Pǎun'13)

Take $\beta_{0}>0$ so that $K_{X}+(1-\beta) D$ is ample for all $\beta \in\left(0, \beta_{0}\right)$. There exists a unique Kähler-Einstein metric $\omega_{\beta} \in c_{1}\left(K_{X}\right)+(1-\beta) c_{1}(D)$ with cone singularities along $D$ for angle $2 \pi \beta$ such that

$$
\operatorname{Ric} \omega_{\beta}=-\omega_{\beta} \quad \text { on } X \backslash D
$$

## Proof.

Solve complex Monge-Ampère equations.

## Conical approximation of Kähler-Einstein metrics

## Theorem (Guenancia '20)

Assume that $K_{X}+D$ is ample. Then, there is a family of Kähler-Einstein metrics with cone singularities of angle $2 \pi \beta$ converges to a Kähler-Einstein metric of Poincaré type as $\beta \rightarrow 0$ in the sense of pointed Gromov-Hausdorff topology.

In this talk, we consider the analogue of Guenancia's result for csck metrics.

## 2. Conical approximation (Differential Geometry)

Main result and strategy
Theorem (A, '22)
Assume that $H^{0}(D, T D)=0$ and $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial. If $X \backslash D$ has a csc metric $\omega_{0}^{\text {csc }} \in c_{1}\left(L_{X}\right)$ of Poincare type, then $X \backslash D$ admits a csc cone metric $\omega_{\beta}^{\text {csc }} \in c_{1}\left(L_{X}\right)$ for sufficiently small angle $2 \pi \beta$.
Moreover, $\omega_{\beta}^{c s c K} \rightarrow \omega_{0}^{c s c K}$ as $\beta \rightarrow 0$ in the weighted Hölder space $C_{\eta}^{4, \alpha}(X \backslash D)$ for some $-1 \ll \eta<0$.


## Preliminaries

- $\left(X, L_{X}\right)$ : a polarized manifold
- $D \in\left|L_{X}\right|$ : a smooth hypersurface
- $\sigma_{D} \in H^{0}\left(X, L_{X}\right)$ : a defining section of $D$
- $H^{0}(D, T D)=0$ and $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial.
- $h_{X}$ : a Hermitian metric on $L_{X}$ with positive curvature
- $t:=\log \left\|\sigma_{D}\right\|_{h_{X}}^{-2} \in \operatorname{PSH}(X \backslash D)(t \rightarrow+\infty$ near $D$. $)$
- $\theta_{X}:=\sqrt{-1} \partial \bar{\partial} t:$ a Kähler metric on $X$
- $\theta_{D}:=\left.\theta_{X}\right|_{D}$


## Kähler metrics of Poincaré type

## Definition (Poincaré type Kähler metrics)

We say that $\omega=\theta_{X}+\sqrt{-1} \partial \bar{\partial} s$ is a Kähler metric of Poincaré type in the class $\left[\theta_{X}\right]$ iff it is quasi-isometric to the model cusp metric

$$
\frac{\sqrt{-1} d z^{1} \wedge d \bar{z}^{1}}{\left|z^{1}\right|^{2} \log ^{2}\left|z^{1}\right|^{2}}+\sum_{j} \sqrt{-1} d z^{j} \wedge d \bar{z}^{j}
$$

and $s=O\left(\log \log \left|z^{1}\right|^{-2}\right)$ near $D=\left\{z^{1}=0\right\}$.

Definition (the average of scalar curvature)

$$
\begin{gathered}
\underline{S}:=\frac{\int_{X \backslash D} S(\omega) \omega^{n}}{\int_{X \backslash D} \omega^{n}}=\frac{-n\left(K_{X}+L_{X}\right) L_{X}^{n-1}}{L_{X}^{n}} \\
\underline{S}_{D}:=\frac{\int_{D} S\left(\theta_{D}\right) \theta_{D}^{n-1}}{\int_{D} \theta_{D}^{n-1}}=\frac{-\left.(n-1)\left(K_{X}+L_{X}\right)\right|_{D}\left(\left.L_{X}\right|_{D}\right)^{n-2}}{\left(\left.L_{X}\right|_{D}\right)^{n-1}}
\end{gathered}
$$

## Auvray's work

Theorem (Auvray '13)
If $X \backslash D$ have a cscK metric of Poincaré type, then the following inequality holds:

$$
\underline{S}<\underline{S}_{D} .
$$

Theorem (Auvray '17)
If $X \backslash D$ have a cscK metric of Poincaré type, then $D$ admits a cscK metric in $\left[\left.\theta_{X}\right|_{D}\right]$.

## Definition

$$
\omega_{0}:=\theta_{X}-\frac{2}{\underline{S}_{D}-\underline{S}} \sqrt{-1} \partial \bar{\partial} \log t
$$

is a Kähler metric of Poincaré type, where $\theta_{D}=\left.\theta_{X}\right|_{D}$ is a cscK metric.

## Asymptotic behavior of a cscK metric of Poincaré type

Assume that

$$
\omega_{0}^{c s c K}:=\omega_{0}+\sqrt{-1} \partial \bar{\partial} \varphi_{c s c K}
$$

is a cscK metric of Poincaré type (Background Poincaré metric).
Theorem (Auvray '17)
There exists $\delta>0$ such that

$$
\varphi_{c s c K}=O\left(t^{-\delta}\right)=O\left(\left(\log \left\|\sigma_{D}\right\|^{-2}\right)^{-\delta}\right)
$$

as $t \rightarrow \infty$ at any differential order.

Function spaces
Definition (Cheng-Yau, Kobayashi, Auvray)
We can define the Hölder space $C^{k, \alpha}(X \backslash D)$ (Cheng-Yau, Kobayashi) and the weighted Hölder space $C_{\eta}^{k, \alpha}(X \backslash D)$ (Auvray) for $\eta \in \mathbb{R}$ by

$$
\begin{aligned}
& C_{\eta}^{k, \alpha}=C_{\eta}^{k, \alpha}(X \backslash D):=\left\{f \in C^{k, \alpha}(X \backslash D) \mid\left\|^{-\eta} f\right\|_{C c^{+\infty}(X \mid D)}<\infty\right\} . \\
& f \in C_{\eta}^{4, \alpha}(X \backslash D)(\eta<0) \\
& D \backslash D
\end{aligned}
$$

## Kähler cone metric

## Definition (Kähler metrics with cone singularities)

$\omega$ is a Kähler cone metric of angle $2 \pi \beta$ iff it is quasi-isometric to the model cone metric near $D=\left\{z^{1}=0\right\}$ :

$$
\frac{\beta^{2} \sqrt{-1} d z^{1} \wedge d \bar{z}^{1}}{\left|z^{1}\right|^{2(1-\beta)}}+\sum_{j} \sqrt{-1} d z^{j} \wedge d \bar{z}^{j}
$$

$$
0<\beta<1
$$

$$
0<\beta \ll 1
$$

$$
\beta=0
$$



## cscK cone metric

- $c_{1}(X, D, \beta):=c_{1}(X)-(1-\beta) c_{1}(D)$
- $\theta \in c_{1}(X, D, \beta)$ : a smooth representation
- $f_{0} \in C^{\infty}(X)$ s.t. $\operatorname{Ric}\left(\theta_{X}\right)=\theta+(1-\beta) \theta_{X}+\sqrt{-1} \partial \bar{\partial} f_{0}$
- $\omega_{\theta}$ : a solution of the following equation

$$
\operatorname{Ric}\left(\omega_{\theta}\right)=\theta+2 \pi(1-\beta)[D] \Longleftrightarrow \omega_{\theta}^{n}=e^{f_{0}}\left\|\sigma_{D}\right\|_{h_{X}}^{2 \beta-2} \theta_{X}^{n}
$$

## Definition (cscK cone metrics (Zheng))

$$
\omega_{c s c K}^{n}=e^{F} \omega_{\theta}^{n}, \quad \Delta_{\omega_{c s c K}} F=\operatorname{tr}_{\omega_{c s c K}} \theta-\underline{S}_{\beta}
$$

Here,

$$
\underline{S}_{\beta}:=\frac{n c_{1}(X, D, \beta) \cup c_{1}\left(L_{X}\right)^{n-1}}{c_{1}\left(L_{X}\right)^{n}} .
$$

## Lemma

$\omega_{\beta}$ is a cscK cone metric of angle $2 \pi \beta \Longleftrightarrow S\left(\omega_{\beta}\right)=\underline{S}_{\beta}$ on $X \backslash D$.

## Kähler potential of cone metric

Definition (potential function of cone metric)

$$
G_{\beta}(t):=\frac{2}{\underline{S}_{D, \beta}-\underline{S}_{\beta}} \int_{2}^{t} \frac{\beta}{e^{\beta y}-1} d y .
$$

Here,

$$
\underline{S}_{D, \beta}:=\frac{\left.(n-1) c_{1}(X, D, \beta)\right|_{D} \cup c_{1}\left(\left.L_{X}\right|_{D}\right)^{n-2}}{c_{1}\left(\left.L_{X}\right|_{D}\right)^{n-1}} .
$$

- $G_{\beta}(t) \rightarrow \frac{2}{\underline{S}_{D}-\underline{S}} \log t$ as $\beta \rightarrow 0$.

$$
--\sqrt{-1} \partial \bar{\partial} G_{\beta}(t) \approx \frac{2}{\underline{S}_{D, \beta}-\underline{S}_{\beta}}\left(\frac{\beta}{1-\left|z^{1}\right|^{2 \beta}}\right)^{2} e^{\beta a} \frac{\sqrt{-1} d z^{1} \wedge d \bar{z}^{1}}{\left|z^{1}\right|^{2(1-\beta)}}
$$

Here, we write $t=\log \left|z^{1}\right|^{-2} e^{-a}$ near $D=\left\{z^{1}=0\right\}$.

## Background Kähler cone metric

## Definition (Background Kähler cone metric)

$$
\omega_{\beta}:=\theta_{X}-\sqrt{-1} \partial \bar{\partial} G_{\beta}(t)+\sqrt{-1} \partial \bar{\partial} \varphi_{c s c K}
$$

Since $\varphi_{c s c K}$ decays near $D$,

$$
\omega_{\beta} \approx \theta_{X}+\frac{2}{\underline{S}_{D, \beta}-\underline{S}_{\beta}}\left(\frac{\beta}{1-\left|z^{1}\right|^{2 \beta}}\right)^{2} e^{\beta a} \frac{\beta^{2} \sqrt{-1} d z^{1} \wedge d \bar{z}^{1}}{\left|z^{1}\right|^{2(1-\beta)}} .
$$

## Remark

Note that $\omega_{\beta} \rightarrow \omega_{0}^{c s c K}$ as $\beta \rightarrow 0$. In general, $\omega_{\beta}$ is not a cscK cone metric.

## Fixed point formula and the Lichnerowicz operator

Consider the expansion : $S\left(\omega_{\beta}+\sqrt{-1} \partial \bar{\partial} \phi\right)=S\left(\omega_{\beta}\right)+L_{\omega_{\beta}}(\phi)+Q_{\omega_{\beta}}(\phi)$. Here, $L_{\omega_{\beta}}: C_{\eta}^{4, \alpha} \rightarrow C_{\eta}^{0, \alpha}$ is the linearization of the scalar curvature operator. Then, we can write as

$$
\begin{aligned}
& S\left(\omega_{\beta}+\sqrt{-1} \partial \bar{\partial} \phi\right)=\underline{S}_{\beta} \\
& \quad \Longleftrightarrow \phi=-L_{\omega_{\beta}}^{-1}\left(S\left(\omega_{\beta}\right)-\underline{S}_{\beta}+Q_{\omega_{\beta}}(\phi)\right), \quad \phi \in C_{\eta}^{4, \alpha}(X \backslash D) .
\end{aligned}
$$

## Problem

The $\operatorname{map} \phi \mapsto-L_{\omega_{\beta}}^{-1}\left(S\left(\omega_{\beta}\right)-\underline{S}_{\beta}+Q_{\omega_{\beta}}(\phi)\right)$ have a fixed point in $C_{\eta}^{4, \alpha}$ ?

$$
L_{\omega_{\beta}}=-\mathcal{D}_{\omega_{\beta}}^{*} \mathcal{D}_{\omega_{\beta}}+<\nabla^{1,0} S\left(\omega_{\beta}\right), \nabla^{0,1} *>
$$

The first term $\mathcal{D}_{\omega_{\beta}}^{*} \mathcal{D}_{\omega_{\beta}}$ is called the Lichnerowicz operator. $\mathcal{D}_{\omega_{\beta}}=\bar{\partial} \circ \nabla^{1,0}$, so $\operatorname{Ker}\left(\mathcal{D}_{\omega_{\beta}}^{*} \mathcal{D}_{\omega_{\beta}}\right) \simeq\{$ holomorphic vector field $\}$.

## Sektnan's work

## Proposition (Sektnan '18)

Assume that $H^{0}(D, T D)=0$ and $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial. There exists $\kappa<0$ such that the Lichnerwicz operator

$$
\mathcal{D}_{\omega_{0}^{\text {cscc } K}}^{*} \mathcal{D}_{\omega_{0}^{c s c}}: C_{\eta}^{4, \alpha}(X \backslash D) \rightarrow C_{\eta}^{0, \alpha}(X \backslash D)
$$

is isomorphic for any $\eta \in(\kappa, 0)$.

## Remark

Sektnan showed more general result in the study of extremal Kähler metrics of Poincaré type. (He doesn't assume that $H^{0}(D, T D)=0$ and $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial.)

## Outline of the proof ( $\exists \mathrm{csc} \mathrm{K}$ cone metric)

## Lemma

$\exists \epsilon>0$ s.t. $\left\|S\left(\omega_{\beta}\right)-\underline{S}_{\beta}\right\|_{C_{\eta}^{0, \alpha}}=O\left((-\log \beta)^{-\epsilon}\right)$.

## Lemma

There exists $K>0$ such that

$$
\left\|L_{\omega_{\beta}} \phi\right\|_{C_{\eta}^{0, \alpha}} \geq K\|\phi\|_{C_{\eta}^{4, \alpha}}, \quad 0<\forall \beta \ll 1, \quad \forall \phi \in C_{\eta}^{4, \alpha} .
$$

## Proof.

For small $\beta>0$, the map

$$
\phi_{\beta} \mapsto-L_{\omega_{\beta}}^{-1}\left(S\left(\omega_{\beta}\right)-\underline{S}_{\beta}+Q_{\omega_{\beta}}\left(\phi_{\beta}\right)\right)
$$

is a contraction on a small ball of radius $r_{\beta}=O\left((-\log \beta)^{-\epsilon}\right)$ centered at $0 \in C_{\eta}^{4, \alpha}(X \backslash D)$. Thus, $\omega_{\beta}+\sqrt{-1} \partial \bar{\partial} \phi_{\beta}$ is a cscK cone metric and converges to $\omega_{0}^{c s c K}$ as $\phi_{\beta} \rightarrow 0(\beta \rightarrow 0)$.
3. log K-stability (Algebraic Geometry)

## log test configuration

## Definition

A log test configuration $\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}\right)$ for $\left(\left(X, L_{X}\right) ; D\right)$ is

1. $\mathcal{X}$ : normal variety, $\pi:\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right) \rightarrow \mathbb{C}$ : flat projective family with an equivariant $\mathbb{C}^{*}$-action,
2. $\pi^{-1}(1) \simeq\left(X, L_{X}\right)$,
3. $\mathcal{D}$ is the closure of $\mathbb{C}^{*}$-orbit of $D \in \pi^{-1}(1)$.
$\mathcal{X}_{0}:=\pi^{-1}(0):$ central fiber of $\mathcal{X}, \quad \mathcal{D}_{0}$ : central fiber of $\mathcal{D}$

- $\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}\right)$ is product if $\mathcal{X} \simeq X \times \mathbb{C}, \mathcal{D} \simeq D \times \mathbb{C}$.
- $\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}\right)$ is trivial if it is product and $\mathbb{C}^{*}$-action is trivial.


## log Donaldson-Futaki invariant

- $d_{k}:=\operatorname{dim} H^{0}\left(\mathcal{X}_{0}, \mathcal{L}^{k} \mid \mathcal{X}_{0}\right)$
- $\tilde{d}_{k}:=\operatorname{dim} H^{0}\left(\mathcal{D}_{0},\left.\mathcal{L}^{k}\right|_{\mathcal{D}_{0}}\right)$
- $w_{k}:=$ the total weight of the $\mathbb{C}^{*}$-action on $H^{0}\left(\mathcal{X}_{0}, \mathcal{L}^{k} \mid \mathcal{X}_{0}\right)$
- $\tilde{w}_{k}:=$ the total weight of the $\mathbb{C}^{*}$-action on $H^{0}\left(\mathcal{D}_{0},\left.\mathcal{L}^{k}\right|_{\mathcal{D}_{0}}\right)$

We have the following formulae for sufficiently large $k$ :

$$
\begin{gathered}
d_{k}=a_{0} k^{n}+a_{1} k^{n-1}+\ldots, \quad w_{k}=b_{0} k^{n+1}+b_{1} k^{n}+\ldots \\
\tilde{d}_{k}=\tilde{a}_{0} k^{n-1}+\tilde{a}_{1} k^{n-2}+\ldots, \quad \tilde{w}_{k}=\tilde{b}_{0} k^{n}+\tilde{b}_{1} k^{n-1}+\ldots
\end{gathered}
$$

## Definition (log Donaldson-Futaki invariant)

$$
D F\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}, \beta\right)=\frac{2\left(a_{1} b_{0}-a_{0} b_{1}\right)}{a_{0}}+(1-\beta) \frac{a_{0} \tilde{b}_{0}-\tilde{a}_{0} b_{0}}{a_{0}}
$$

## log K-stability

## Definition (log K-(semi)stability)

- $\left(\left(X, L_{X}\right) ; D\right)$ is $\log \mathbf{K}$-semistable with angle $2 \pi \beta$, if $D F\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}, \beta\right) \geq 0$ for any log test configuration $\left(\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right) ; \mathcal{D}\right)$.
- $\left(\left(X, L_{X}\right) ; D\right)$ is $\log \mathbf{K}$-stable with angle $2 \pi \beta$ if it is $\log$ K-semistable and $\operatorname{DF}\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}, \beta\right)=0$ iff $\left(\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right) ; \mathcal{D}\right)$ is trivial.

Definition (uniform log K-stability)

- $\left(\left(X, L_{X}\right) ; D\right)$ is uniformly log K-stable with angle $2 \pi \beta$, if there is $\epsilon>0$ s.t.

$$
D F\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}, \mathcal{D}, \beta\right) \geq \epsilon\left\|\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right)\right\|_{m}
$$

for any log test configuration $\left(\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right) ; \mathcal{D}\right)$.
$\left\|\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right)\right\|_{m}$ : Dervan's minimum norm of $\left(\mathcal{X}, \mathcal{L}_{\mathcal{X}}\right)$

## log YTD conjecture

We assume that $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial.
Conjecture (log Yau-Tian-Donaldson conjecture)
The existence of cscK cone metric of angle $2 \pi \beta$ is equivalent to (uniform) $\log \mathrm{K}$-stability with angle $2 \pi \beta$.

Theorem (A-Hashimoto-Zheng '21)
If $\left(\left(X, L_{X}\right) ; D\right)$ admits a cscK cone metric for angle $2 \pi \beta$, then it is uniformly $\log K$-stable with angle $2 \pi \beta$.

Corollary (A. '22)
Assume that $H^{0}(T D)=0$ and $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial. If $X \backslash D$ has a cscK metric of Poincaré type, then $\left(\left(X, L_{X}\right) ; D\right)$ is uniformly log $K$-stable with sufficiently small angle $2 \pi \beta$.

## log K-semistability with angle 0 ( $D$ : cscK)

## Conjecture (J.Sun-S.Sun '16)

Assume that $\underline{S}_{D} \leq 0$. If $\left(D,\left.L_{X}\right|_{D}\right)$ has a cscK metric, then the pair $\left(\left(X, L_{X}\right) ; D\right)$ is $\log \mathrm{K}$-semistable with cone angle 0.

Theorem (S. Sun '13)
Assume that $\underline{S}_{D}=0$. If $\left(D,\left.L_{X}\right|_{D}\right)$ has a cscK metric, the pair $\left(\left(X, L_{X}\right) ; D\right)$ is strictly log $K$-semistable with cone angle 0. (Namely, it is log K-semistable and there exists a nontrivial log test configuration with vanishing log Donaldson-Futaki invariant.)

## log K-semistability with angle 0 ( $X \backslash D$ : cscK)

## Conjecture (Székelyhidi '06)

$X \backslash D$ admits a cscK metric of Poincaré type iff $\left(\left(X, L_{X}\right) ; D\right)$ is log K-stable with angle 0 and $\underline{S}<\underline{S}_{D}$.

Corollary (A. '22)
Assume that $H^{0}(T D)=0$ and $\operatorname{Aut}_{0}\left(\left(X, L_{X}\right) ; D\right)$ is trivial. If $X \backslash D$ has a cscK metric of Poincaré type, then $\left(\left(X, L_{X}\right) ; D\right)$ is log K-semistable with angle 0.
$X \backslash D:$ Poincaré type $\csc \mathrm{K} \xlongequal{\text { Auvray }} D: \operatorname{cscK}$ s.t. $\underline{S}_{D}<0$

$\left(\left(X, L_{X}\right) ; D, 0\right): \log \mathrm{K}$-stable $\Longrightarrow\left(\left(X, L_{X}\right) ; D, 0\right): \log \mathrm{K}$-semistable

Thank you for your attention!

