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Let S be a compact smooth manifold of dimS = 2m+1.

A Sasakian structure on S consists of

• a contact distribution D, i.e. a 2m dimensional distribution i.e.

TS/D is trivial and oriented,

the Levi form LD : D ×D → TS/D defined by

LD(X,Y ) = −ηD([X,Y ]) is nodegenerate

where ηD : TS → TS/D is the projection,

• pseudo-convex CR-structure J on D i.e.

LD(X, JY ) is positive definite Hermitian form.

• Reeb vector field ξ i.e.

a CR vector field (⇔ Lie derivative Lξ prserves C∞(D) and J),

ηD(ξ) is a positive section of C∞(TS/D).
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TS = D ⊕ Rξ

Example : S = the unit circle bundle of a positive line bundle L → M

The flow {Exp(tξ)}t∈R is called the Reeb flow.

The pseudo-convex CR-structure determines Kähler structures on the

local orbit spaces of the Reeb flow.

Differential forms on S obtained by pulling back from those local orbit

spaces are called basic forms.

Naturally ∂ and ∂ operators can be considered to operate on basic forms,

which we denote by ∂B and ∂B, and we obtain Dolbeault theory, Hodge

theory and Chern-Weil theory for basic forms.
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Suppose that the basic first Chern class cB1 (S) is positive,

(i.e. represented by a real closed positive (1,1)-basic form)

or zero or negative.

Each case we take ϵ = 1,0,−1.

Suppose that we are given a decomposition

2πcB1 (S) = ϵ(γ1 + · · ·+ γk)

for some basic Kähler classes γα.

Basic Kähler metrics ωα ∈ γα are called transverse coupled Kähler-

Einstein metrics if

ρT (ω1) = · · · = ρT (ωk) = ϵ
k∑

β=1

ωβ (1)

where

ρT (ωα) = −i∂B∂B logωm
α

is the transverse Ricci form of ωα.
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In the case of ϵ = 0 and −1, by Yau’s theorem a solution always exists.

Defn : A Sasaki manifold of dim2m + 1 is said to be toric if S admits

an effective Tm+1-action preserving (D, J) and ξ ∈ t.

In the case of k = 1 and ϵ = 1, F-Ono-Wang proved the following:

Let S be a toric Sasaki manifold with cB1 (S) > 0 and c1(D) = 0. Then

there exists another Sasakian structure (D′, J ′, ξ′) for which a transverse

Kähler-Einstein metrics exists. This induces a Sasaki-Einstein metric on

S.

Essential idea is the volume minimization of Martelli-Sparks-Yau.

Question : Does a similar idea work for the coupled transverse KE

metrics ?
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Kähler manifolds

⊂ Riemannian manifolds ∩ complex manifolds ∩ symplectic manifolds

Sasaki manifolds

⊂ Riemannian manifolds ∩ CR manifolds ∩ contact manifolds

Another aspect:

Kähler cone R× S, dr2 + r2gS (affine algebraic variety)

⊃ {r = 1} = S

→ Kähler local orbit spaces of the Reeb flow

“Kähler sandwich” (Boyer-Galicki)
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More on the definitions of Sasaki manifolds.

As a Riemannian manifold

S has a natural Riemannian metric g defined by

g(ξ, ξ) = 1, g(ξ,D) = 0,

and

gD =
1

2
dηξ(· J ·)

where ηξ = ηD(ξ)−1ηD contact 1-form.

The Riemannian manfold (S, g) is often called a Sasaki manifold.

The normalization of g(ξ, ξ) = 1 is the standard choice.

The associated transverse Kähler form ωT is given by

ωT =
1

2
dηξ.
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If (S, g) is an Einstein manifold, called a Sasaki-Einstein (SE for short)

manifold, then the Ricci curvature Ricci satisfies

ρT (ωT ) = (m+1)ωT .

Naturally, by the Chern-Weil theory,

2πcB1 (S) = [ρT (ωα)]B

where [·]B denotes a basic cohomology class.

Hence

2πcB1 (S) = (m+1)[
1

2
dηξ]B

is an obvious necessary condition for the ∃ of a SE metric.
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Lemma

Condition cB1 (S) > 0 and c1(D) = 0 is equivalent to

2πcB1 (S) = (m+1)[
1

2
dηξ]B

after suitable modification (called D-homothetic transformation) of the

Sasakian structure.

Transverse moment map w.r.t. cB1 (S)

versus

contatct moment map w.r.t. [dηξ]B (or ηξ)
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More on the definitions of Sasaki manifolds.

As a link of a Kähler cone

Fact : Consider the Riemannian cone (V, gV ) of (S, g), where V the

product manifold V = R+ × S and the metric gV is the warped product

metric

gV = dr2 + r2g

with r the standard coordinate of R+. Then (V, gV ) is a Kähler.

Conversely, for a Kähler cone manifold V, gV , the link {r = 1} ∼= (S, g) is

a Sasaki manifold in the following way:

η = dc log r|S={r=1}

is a contact form, and D = ker η is a contact distribution, and ξ :=

Jr ∂
∂r|r=1 is the Reeb vector field.

10



Summary:

Cone (V, gV ) is Kähler.

⇔
(S, g) ∼= {r = 1} is Sasakian.

⇔
The local orbit spaces of the Reeb flow are Kähler.

(Boyer-Galicki called this “Kähler sandwich”)

Fact Cone (V, gV ) is Calabi-Yau (Ricci-flat Kähler).

⇔
(S, g) ∼= {r = 1} is Sasaki-Einstein.

⇔
The local orbit spaces of the Reeb flow are Kähler-Einstein with

ρT (ωT ) = (m+1)ωT .
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Transverse Kähler geometry with ξ fixed:

Let φ be a basic function.

If we change

ωT :=
1

2
dη =

1

2
ddc log r|r=1 ∈

1

m+1
cB1 (S)

to

ω(φ) = ωT + i∂B∂Bφ =
1

2
ddc log(re2φ)|{r=1}

this corresponds to the change η into η + dcφ.

So D = ker η changes into D′ = ker(η + dcφ)

while the Reeb vector field ξ unchanged.

But just as in ordinary Kähler geometry;

Claim : The moment map image depends only on basic Kähler class.

Independent of the CR structure.
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Suppose that a real compact torus T acts effectively on S preserving

(D, J, ξ) and that the Lie algebra t of T contains ξ.

Let ω be a T -invariant basic Kähler form in 1
m+1c

B
1 (S).

Let F be a T -invariant basic smooth function on S such that

ρT (ω) = (m+1)ω + i∂B∂BF.

Then since cB1 (S) > 0, for any X ∈ t there exists a smooth basic function

v such that

i(X)ω = −dv.

Then as in Fano manifolds

t/Rξ ∼= {v | ∆Bv + viFi + (m+1)v = 0}
∼= {v | i(X)ω = −dv for some X ∈ t,

∫
S
v eFωm ∧ ηξ = 0}

where ∆B denotes the ∂B-Laplacian.
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Define Fut : t → R by

Fut(X) =
∫
S
viFi ωm ∧ ηξ

=
∫
S

1

2
(JX)F ωm ∧ ηξ

= −(m+1)
∫
S
v ωm ∧ ηξ.

Then as for Fano manifolds, Fut is independent of choice of ω in 1
m+1c

B
1 (S),

and the non-vanishing of Fut obstructs the existence of a transverse

Kähler-Einstein metric in 1
m+1c

B
1 (S).
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This invariant can be expressed in terms of the transverse moment map

µT : S → (t/Rξ)∗

⟨µT (x), X⟩ = v(x).

The image of µT is a compact convex polytope,

which we write 1
m+1P−KS

,

and this polytope is unchaged even if the Kähler form ω is changed in

the cohomology class 1
m+1c

B
1 (S).
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Recall the lemma:

Condition cB1 (S) > 0 and c1(D) = 0 is equivalent to

2πcB1 (S) = (m+1)[
1

2
dηξ]B.

The transverse moment map can be compared to the contact moment map

µcon : V → t∗ defined on the Kähler cone V

⟨µcon(x), X⟩ = (r2ηξ(X))(x).

with

v =
m+1

2
ηξ(X) + c

where c is determined by the normalization of v.
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Identifying S with {r = 1} we have the moment map of S by restricting

µcon to {r = 1}.

The image of S is

Pξ := Image(µcon) ∩ {p ∈ t∗ | ⟨p, ξ⟩ = 1}

since ηξ(ξ) = 1.

Since the Hamiltonian functions for the basis of t/Rξ determine affine

coordinates on the images of µT and µcon, the map

Φ := µT ◦ (µcon)−1|Pξ
: Pξ →

1

m+1
P−KS

(2)

is an affine map in terms of those affine coordinates.

1
m+1P−KS

is in (t/Rξ)∗ which is a vector space and contains the origin 0

but that Pξ is in a hyperplane in the cone C ⊂ t∗.
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Put o := Φ−1(0), and call o the origin in the image

Pξ ⊂ {p ∈ t∗ | ⟨p, ξ⟩ = 1} of the contact moment map.

We regard the hyperplane {p ∈ t∗ | ⟨p, ξ⟩ = 1} as a vector space by choos-

ing the origin o to be zero,

Suppose also that we are given a decomposition

2πcB1 (S) = γ1 + · · ·+ γk.

Proposition

(1) There is a Minkowski sum decomposition

Pξ = Pξ,1 + · · ·+ Pξ,k

into the sum of convex polytopes Pξ,α ⊂ Pξ, such that if there are trans-

verse coupled Kähler-Einstein metrics then the sum of the barycenters

of Pξ,α lies at the origin o.
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(2) The Minkowski sum decomposition in (1) is unique up to translations

of Pξ,α to Pξ,α + cα with cα ∈ t∗ such that
∑k

α=1 cα = o.

(3) The Minkoswski sum decomposition of Pξ in (1) determines a

Minkowski sum decomposition of the contact moment cone Cξ

Cξ = Cξ,1 + · · ·+ Cξ,k
into the sum of cones Cξ,α ⊂ t∗ in such a way that the intersection of

Cξ,α with Pξ is Pξ,α.
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A Sasaki manifold S of dimension 2m+1 is toric if its Kähler cone C(S)
is toric.

For a compact toric Sasaki manifold S we have the following equivalent
conditions, c.f. Martelli-Sparks-Yau, Cho-F-Ono:

• cB1 (S) > 0 and c1(D) = 0.
• There is a rational vector γ ∈ t∗ such that

⟨γ, ξ⟩ = −m− 1 and ℓa(γ) = −1 for a = 1, · · · , d.

where the moment cone of C(S) is

C = {p ∈ t∗\{o} | ⟨p, ℓa⟩ ≥ 0, a = 1, · · · , d}

2πℓ1, · · · ,2πℓd are primitive elements of the kernel Λ of exp : t → T .

• The power of the canonical line bundle K⊗ℓ
C(S) of the cone C(S) is a

trivial line bundle for some integer ℓ.

Because of (c) we call these equivalent conditions Calabi-Yau condition

of the Kähler cone.
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Theorem Let S be a toric Sasaki manifold satisfying Calabi-Yau con-

dition of the Kähler cone. Then, in the above Proposition, we can take

o = −
1

m+1
γ.

Using the above Proposition and Theorem we apply the volume mini-

mization argument of Martelli-Sparks-Yau in the following setting.

Let S be a toric Sasaki manifold satisfying Calabi-Yau condition of the

Kähler cone. We regard

Ξo := {ξ′ ∈ C∗ ⊂ t | ⟨ξ′, o⟩ = 1}
= {ξ′ ∈ C∗ ⊂ t | ⟨ξ′, γ⟩ = −m− 1}

as the space of Reeb vector fields satisfying the Calabi-Yau conditions

of the Kähler cone.
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Let γ1, · · · , γk be basic Kähler classes with respect to the Reeb vector

field ξ.

Let Pξ,1, · · · , Pξ,k be compact convex polytopes corresponding to γ1, · · · , γk,
which are assumed to be subsets in the contact moment polytope Pξ of

S,

and Cξ,1, · · · , Cξ,k be convex polyhedral cones in the contact moment

convex cone Cξ of the Kähler cone C(S) of S such that Pξ,α = Cξ,α ∩ Pξ.
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Choose ξ′ ∈ Ξo, and set for α = 1, · · · , k

Pξ′ = {p ∈ Cξ | ⟨ξ′, p⟩ = 1},

Pξ′,α = Cξ,α ∩ Pξ′,

∆ξ′,α = {p ∈ Cξ,α | ⟨ξ′, p⟩ ≤ 1}.

We now consider the functional W : Ξo → R defined by

W (ξ′) :=
k∑

α=1

log
Vol(Pξ′,α)

|ξ′|

=
k∑

α=1

log((m+1)Vol(∆ξ′)).
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Theorem Let S be a toric Sasaki manifold with Calabi-Yau condition

of the Kähler cone, i.e. cB1 (S) > 0 and c1(D) = 0.

(1) W is a strictly convex function on Ξo.

(2) If we have a critical point ξ′ ∈ Ξo such that

Pξ′ = Pξ′,1 + · · ·+ Pξ′,k

then there exist transverse couple Kähler-Einstein metrics with re-

spect to ξ′.

(3) In the case of k = 1, if we take γ1 = cB1 (S) and Pξ,1 = Pξ then

we have Pξ′,1 = Pξ′ for any ξ′ ∈ Ξo, and thus the assumption in (2)

is always satisfied. Further, the functional W is a strictly convex

proper function and always have a critical point. (This case is due

to Martelli-Sparks-Yau.)

24



Even if we assume

2πcB1 (S) = (γ1 + · · ·+ γk)

and

Pξ = Pξ,1 + · · ·+ Pξ,k

we do not in general obtain

P ′
ξ = Pξ′,1 + · · ·+ Pξ′,k

for other ξ′ ∈ Ξo, a decomposition of the basic first Chern class cB1 (S, ξ′)
with respect to ξ′ in the form

2πcB1 (S, ξ′) = γ′1 + · · ·+ γ′k.

The failure of getting a Minkowski sum decomposition can be seen from

the non-linearity of the CR f-twist of Apostolov-Calderbank.
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If ξ′ ∈ t is another Reeb vector field then there is a positive Killing

potential f of ξ′ with respect to ξ satisfying

ξ′ = fξ +Kf

where f is a positive affine function and Kf ∈ C∞(D). This implies

ηξ′ = ηD(ξ′)−1ηD =
1

f
ηξ.

If x1, · · · , xn and x′1, · · · , x′n are affine coordinates in terms of a basis

of t on Pξ and Pξ′ respectively such that o is (0, · · · ,0) in both of the

coordinates then

x′i =
xi

f
.

This transform is called the CR f-twist (Apostolov-Calderbank).
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Let P̃ξ and P̃ξ,α be the f-twist of Pξ and Pξ,α. If x = x1 + · · · + xk for

some xα ∈ Pξ,α the the f-transform of x is

x̃ =
x

f(x)

=
x1 + · · ·+ xk

f(x)

̸=
k∑

i=1

xi
f(xi)

= x̃1 + · · ·+ x̃k

The inequality above explains the failure of getting a Minkowski sum

P̃ ′
ξ = P̃ξ′,1 + · · ·+ P̃ξ′,k

by the f-transform.
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