Recent Development in Value Distribution Theory of the Gauss Map of Complete Minimal Surfaces

Yu KAWAKAMI

(Joint work with Pham Hoang Ha and Mototsugu Watanabe)

Faculty of Mathematics and Physics, Kanazawa University
The 28th Symposium on Complex Geometry

Plan

We will give a brief survey of recent studies on value distribution of the Gauss map of complete minimal surfaces in Euclidean space.
(1) Meromorphic Functions on \mathbf{C}

- A geometric interpretation for the little Picard theorem
- Notion of Totally ramified value and its weight
(2) Gauss Map of Complete Minimal Surfaces in \mathbf{R}^{3}
- A geometric interpretation for the Fujimoto theorem
- Ramification estimate for the Gauss map of algebraic case
(3) Gauss Map of Complete Minimal Surfaces in \mathbf{R}^{4}
- A geometric interpretation for the Fujimoto theorem
- Ramification estimate for the Gauss map of algebraic case
(9) Outstanding Problems

§1. Meromorphic Functions on C

$$
\begin{aligned}
& \text { Theorem (Little Picard Theorem) } \\
& f: \mathbf{C} \rightarrow \overline{\mathbf{C}}:=\mathbf{C} \cup\{\infty\} \text { : a nonconstant meromorphic function } \\
& D_{f}:=\#(\overline{\mathbf{C} \backslash f(\mathbf{C})): \text { the number of omitted values of } f} \\
& \text { Then } \\
& \qquad D_{f} \leq 2 . \quad \text { (sharp) }
\end{aligned}
$$

```
Example ( }\mp@subsup{D}{f}{}=2\mathrm{ )
    f(z)=\mp@subsup{e}{}{z},\quad\mathrm{ omitted values of }f:0,\infty(2 values)
```

The least upper bound " 2 " has a geometric interpretation.

A Geometric Interpretation

Theorem (S. S. Chern (1960), Ahlfors, etc.)

$f: \mathbf{C} \rightarrow \bar{\Sigma}_{\gamma}$: a nonconstant holomorphic map Here, $\bar{\Sigma}_{\gamma}$: a closed Riemann surface of genus γ
$D_{f}:=\#\left(\bar{\Sigma}_{\gamma} \backslash f(\mathbf{C})\right)$: the number of omitted values of f
Then

$$
D_{f} \leq \chi\left(\bar{\Sigma}_{\gamma}\right)=\left(\text { The Euler Characteristic of } \bar{\Sigma}_{\gamma}\right)=2-2 \gamma
$$

such that

- $\gamma=0: D_{f} \leq 2$ (Little Picard Theorem),
- $\gamma=1: D_{f}=0$ (f is surjective),
- $\gamma \geq 2$: f does not exist.

A Generalization of the Picard Theorem

Theorem (R. Nevanlinna (1929), Robinson (1939))

$f: \mathbf{C} \rightarrow \overline{\mathbf{C}}$: a nonconstant meromorphic function
$q \in \mathbf{Z}_{+}, \alpha_{1}, \ldots, \alpha_{q} \in \overline{\mathbf{C}}$ distinct.
Suppose that all α_{j}-points of f have multiplicity at least ν_{j}. Then

$$
\sum_{j=1}^{q}\left(1-\frac{1}{\nu_{j}}\right) \leq 2
$$

If f does not take a value α_{j}, then we can take $\nu_{j}=\infty$ and $1-\left(1 / \nu_{j}\right)=1$.

Note:

The inequality corresponds to the defect relation in Nevanlinna theory.

Notion of Totally Ramified Value and Its Weight

Definition

$f: \Sigma \rightarrow \overline{\mathbf{C}}$: a meromorphic function, Here Σ is a Riemann surface.
$\nu(\geq 2) \in \mathbf{Z}_{+} \cup\{\infty\}$
$\alpha \in \overline{\mathbf{C}}$ is a totally ramified value of f of order ν
if $f=\alpha$ has no root of multiplicity less than ν.
We regard omitted values as totally ramified values of order ∞ because $\nu=\infty$ means that $f=\alpha$ has no root of any order.

Definition (Varilon (1929))

Same situation as above.
Then the weight for a totally ramified value of f of order ν is definied by

$$
1-\frac{1}{\nu} .
$$

By the total weight ν_{f} of a number of totally ramified values of f, we mean the sum of their weights.

Ramification Estimate

Theorem (Ramification estimate)

$f: \mathbf{C} \rightarrow \overline{\mathbf{C}}$: a nonconstant meromorphic function
$D_{f}:=\#(\overline{\mathbf{C}} \backslash f(\mathbf{C}))$: the number of omitted values of f
ν_{f} : the total weight of a number of totally ramified values of f Then

$$
\left.D_{f} \leq \nu_{f} \leq 2 . \quad \text { sharp }\right)
$$

Example

The Weierstrass \wp-function has exactly 4 totally ramified values of order 2

$$
e_{1}:=\wp(\omega / 2), \quad e_{2}:=\wp\left(\omega^{\prime} / 2\right), \quad e_{3}:=\wp\left(\left(\omega+\omega^{\prime}\right) / 2\right), \quad \infty .
$$

Here the lattice $L=\mathbf{Z} \omega+\mathbf{Z} \omega^{\prime}$. Thus $\nu_{\wp}=4(1-(1 / 2))=2$.

In this case, the least upper bound for ν_{f} coincides with D_{f}.

§2．Gauss Map of Complete Minimal Surfaces in R^{3}

References

－宮岡礼子著，極小曲面（共立叢書 現代数学の潮流），共立出版， 2022 年。
－川上裕，藤森祥一著，極小曲面論入門，SGCライブラリ 147，サイ エンス社，2019年．
－A．Alarcón，F．Forstnerič，F．J．López，Minimal Surfaces from a Complex Analytic Viewpoint，Springer， 2021

Basic Facts of Minimal Surfaces

Σ : a connected, oriented real 2-dimensional C^{∞}-manifold, $X: \Sigma \rightarrow \mathbf{R}^{n}$: a conformal minimal immersion.
Then Σ may be considered as a Riemann surface.
$d s^{2}$: the induced metric from the Euclidean metric of \mathbf{R}^{n}
Theorem
$X(\Sigma)$ is minimal $\Longleftrightarrow \Delta_{d s^{2}} X \equiv 0$.

Corollary

There exists no compact minimal surface without boundary in \mathbf{R}^{n}.

Enneper-Weierstrass Representation

Σ : an open Riemann surface
$\omega=h d z$: a holomorphic 1-form, $g: \Sigma \rightarrow \overline{\mathbf{C}}$ a meromorphic function Assume that

- the poles of g of order k coincides exactly with the zeros of ω of order $2 k$ (Regularity condition)
- $\phi_{1}:=\left(1-g^{2}\right) \omega, \phi_{2}:=i\left(1+g^{2}\right) \omega, \phi_{3}:=2 g \omega$.
$\forall \gamma \in H_{1}(\Sigma ; \mathbf{Z}), \operatorname{Re} \int_{\gamma} \phi_{i}=0(i=1,2,3)$ (Period condition)
Then

$$
X=\operatorname{Re} \int\left(\phi_{1}, \phi_{2}, \phi_{3}\right): \Sigma \rightarrow \mathbf{R}^{3}
$$

is a conformal minimal immersion whose Gauss map is the map g.
$X(\Sigma)$ is minimal \Longleftrightarrow The Gauss map g is meromorphic.

Enneper-Weierstrass Representation, continued

We call the pair $(\omega=h d z, g)$ the Weierstrass data (W-data) of $X(\Sigma)$.

- induced metric from $\mathbf{R}^{3}: d s^{2}=\left(1+|g|^{2}\right)^{2}|\omega|^{2}$,
- Gaussian curvature w.r.t $d s^{2}: K_{d s^{2}}:=-\frac{4\left|g^{\prime}\right|^{2}}{|h|^{2}\left(1+|g|^{2}\right)^{4}} \leq 0$,
- Total curvature w.r.t $d s^{2}(z=u+i v)$

$$
\tau(X):=\int_{\Sigma} K_{d s^{2}} d A=-\int_{\Sigma} \frac{4\left|g^{\prime}\right|^{2}}{\left(1+|g|^{2}\right)^{2}} d u \wedge d v=-\int_{\Sigma} g^{*} \omega_{\mathrm{F} . \mathrm{S} .}
$$

$|\tau(X)|$ is the area of $g(\Sigma)$ w.r.t. the metric induced from the Fubini-Study metric $\omega_{\text {F.S. of }} \overline{\mathbf{C}}$.

Geometric properties of minimal surfaces can be represented by complex analytic data.

Problem

Problem

Given a complete minimal surface, not a plane, what can be said about the size of the set of points on $\overline{\mathbf{C}}$ omitted by its Gauss map?

- $\left(X(\Sigma), d s^{2}\right)$ is complete if $\int_{\gamma} d s$ diverges for every differentiable divergent path γ on Σ.
- $X(\Sigma)$ is a plane \Longleftrightarrow The Gauss map g is constant and $K_{d s^{2}} \equiv 0$.

The Fujimoto Theorem

Theorem (Fujimoto $(1988,1992))$

$X: \Sigma \rightarrow \mathbf{R}^{3}$ a complete conformal minimal immersion
$g: \Sigma \rightarrow \overline{\mathbf{C}}$ its Gauss map
$D_{g}:=\#(\overline{\mathbf{C}} \backslash g(\Sigma))$: the number of omitted values of g ν_{g} : the total weight of a number of totally ramified values of g
Then

$$
D_{g} \leq \nu_{g} \leq 4 . \quad \text { (sharp) }
$$

Scherk surface

$\Sigma=$ the universal covering of $\overline{\mathbf{C}} \backslash\{ \pm 1, \pm i\}$
W-data $(\omega, g)=\left(4 d z /\left(z^{4}-1\right),-z\right)$. Thus $D_{g}=4$.

A Geometric Interpretation

Theorem (cf. K. (2013))

Σ : an open Riemann surface with the conformal metric

$$
d s^{2}:=\left(1+|g|^{2}\right) \omega|\omega|^{2} . \quad\left(m \in \mathbf{Z}_{+}\right)
$$

If the metric $d s^{2}$ is complete and g is nonconstant, then g can omit at most $m+2$ distinct values.

Remark

Geometric meaning of " 2 " in " $m+2$ " is the Euler characteristic of the Riemann sphere $\overline{\mathbf{C}}$.

The least upper bound for D_{g} : "4" $=2+\chi(\overline{\mathbf{C}})$

Algebraic Minimal Surfaces

Theorem (Huber (1957) and Osserman (1964))

$X: \Sigma \rightarrow \mathbf{R}^{3}$: a complete minimal immersion with finite total curvature Then it satisfies

- Σ is conformally equivalent to $\bar{\Sigma}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$, where $\bar{\Sigma}_{\gamma}$ is a closed Riemann surface of genus γ and $p_{1}, \ldots, p_{k} \in \bar{\Sigma}_{\gamma}$,
- The W-data (ω, g) can be extended meromorphically to $\bar{\Sigma}_{\gamma}$.

Definition

When the total curvature of a complete minimal surface is finite, the surface is called an algebraic minimal surface.

The Osserman Problem

Theorem (Osserman (1964))

$X: \Sigma \rightarrow \mathbf{R}^{3}$: an algebraic minimal surface
$g: \Sigma \rightarrow \overline{\mathbf{C}}$: its Gauss map
$D_{g}:=\#(\overline{\mathbf{C}} \backslash g(\Sigma))$: the number of omitted values of g
Then

$$
D_{g} \leq 3
$$

Problem (A Survey of Minimal Surfaces, page 90)

Which is the least upper bound for D_{g}, " 2 " or " 3 "?
Example of $D_{g}=2$: Catenoid $\Sigma=\mathbf{C} \backslash\{0\},(\omega, g)=\left(d z / z^{2}, z\right)$

Nonexsitence for $D_{g}=3$

Theorem (Osserman (1964))

$X: \Sigma=\bar{\Sigma}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbf{R}^{3}$: an algebraic minimal surface
$g: \Sigma \rightarrow \overline{\mathbf{C}}$: its Gauss map with degree d
If $D_{g}=3$, then

- $\gamma \geq 1$, and $d \geq k \geq 3$,
- If $\gamma=1$, then $d=k$ and each end is an embedded end,
- $|\tau(X)| \geq 12 \pi$.

Theorem

There exist NO algebraic minimal surface with $D_{g}=3$ when

- $|\tau(X)|=12 \pi \quad$ (Weitsman and Xavier (1987)) ,
- $|\tau(X)|=16 \pi$ (Fang (1993)).

Conjecture A: The least upper bound for D_{g} is " 2 "?

Example with $\nu_{g}=2.5$ (1)

Conjecture B: The least upper bound for ν_{g} is " 2 "?

Conjecture B is not correct.

Example (Miyaoka-Sato (1994) and K. (2006))

$\Sigma=\mathbf{C} \backslash\{ \pm i\}$. The W-data is defined by

$$
(\omega, g)=\left(\frac{\left(z^{2}+t^{2}\right)^{2}}{\left(z^{2}+1\right)^{2}} d z, \sigma \frac{z^{2}+1+a(t-1)}{z^{2}+t}\right), \quad a, t \in \mathbf{R},(a-1)(t-1) \neq 0
$$

where $\sigma^{2}=(t+3) / a\{(t-1) a+4\}$. For any satisfying $\sigma^{2}<0$, we obtain an algebraic minimal surface of which Gauss map omits 2 values $\sigma, \sigma a$. Moreover, $g(0)$ is a totally ramified value of order 2 . Since $\operatorname{deg} g=2$,

$$
\nu_{g}=1+1+\left(1-\frac{1}{2}\right)=2.5 .
$$

Example with $\nu_{g}=2.5$ (2)

Drawn by Prof. Shoichi Fujimori

Another Example with $\nu_{g}=2.5$ (1)

Mototsugu Watanabe (my student) finds a new example with $\nu_{g}=2.5$!

Example (Watanabe (2022))

$\Sigma=\mathbf{C} \backslash\{0, \pm i\}$. The W-data is defined by

$$
(\omega, g)=\left(\frac{\left\{(b-a) z^{4}+4(b-1) z^{2}+4(b-1)\right\}^{2}}{z^{2}\left(z^{2}+1\right)^{2}} d z, \sigma \frac{(b-a) z^{4}+4 a(b-1) z^{2}+4 a(b-1)}{(b-a) z^{4}+4(b-1) z^{2}+4(b-1)}\right)
$$

where $a, b \in \mathbf{R} \backslash\{1\}$ s.t. $a \neq b$ and $\sigma^{2}=(5 a+11 b-16) /(16 a b-11 a-5 b)<0$. Then we obtain algebraic minimal surfaces of which Gauss map omits 2 values σ, σa. Moreover, $\sigma b=g(\pm \sqrt{2} i)$ is a totally ramified value of order 2 . Thus

$$
\nu_{g}=1+1+\left(1-\frac{1}{2}\right)=2.5 .
$$

Another Example with $\nu_{g}=2.5$ (2)

Drawn by Prof. Shoichi Fujimori

Effective Estimate for D_{g} and ν_{g}

Theorem (K-Kobayashi-Miyaoka (2008))

$X: \Sigma=\bar{\Sigma}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbf{R}^{3}$: an algebraic minimal surface
$g: \Sigma \rightarrow \overline{\mathbf{C}}$: its Gauss map with degree d
$D_{g}:=\#(\overline{\mathbf{C}} \backslash g(\Sigma))$: the number of omitted values of g
ν_{g} : the total weight of a number of totally ramified values of g
Then

$$
D_{g} \leq \nu_{g} \leq 2+\frac{2}{R}, \quad \frac{1}{R}=\frac{\gamma-1+(k / 2)}{d}<1
$$

Point: Applying the theory of algebraic curves

- the Riemann-Hurwitz formula (estimate for D_{g} and ν_{g})
- the Riemann-Roch theorem \rightarrow the Chern-Osserman inequality (estimate for $1 / R$)

Sharpness of KKM-estimate for Some Topological Cases

(1) $(\gamma, k, d)=(0,3,2) \cdots R^{-1}=(0-1+(3 / 2)) / 2=1 / 4$

$$
2+\frac{2}{R}=2.5 \quad \text { (sharp by the Miyaoka-Sato example) }
$$

(2) $(\gamma, k, d)=(0,4,4) \cdots R^{-1}=(0-1+(4 / 2)) / 4=1 / 4$

$$
2+\frac{2}{R}=2.5 \quad(\operatorname{sharp} \text { by the Watanabe example) }
$$

We do not know that this estimate is optimal for all topological cases.

§3. Gauss Map of Complete Minimal Surfaces in \mathbf{R}^{4}

$X=\left(x^{1}, x^{2}, x^{3}, x^{4}\right): \Sigma \rightarrow \mathbf{R}^{4}:$ a conformal minimal immersion
Set $\phi_{i}=\partial x^{i} \quad(i=1,2,3,4)$
If we set

$$
\omega=\phi_{1}-i \phi_{2}, \quad g_{1}=\frac{\phi_{3}+i \phi_{4}}{\phi_{1}-i \phi_{2}}, \quad g_{2}=\frac{-\phi_{3}+i \phi_{4}}{\phi_{1}-i \phi_{2}},
$$

then ω is a holomorphic 1-form, g_{1} and g_{2} are meromorphic functions on Σ.
In particular, $G=\left(g_{1}, g_{2}\right): \Sigma \rightarrow \overline{\mathbf{C}} \times \overline{\mathbf{C}}$ coincides with the Gauss map of $X(\Sigma)$ in \mathbf{R}^{4}.
Furthermore, the induced metric from \mathbf{R}^{4} is represented as

$$
d s^{2}=\left(1+\left|g_{1}\right|^{2}\right) \boxed{1}\left(1+\left|g_{2}\right|^{2}\right)^{\boxed{1}}|\omega|^{2} .
$$

A Geometric Interpretation

Theorem (Aiyama-Akutagawa-Imagawa-K (2016))

Σ : an open Riemann surface with the conformal metric

$$
d s^{2}=\prod_{i=1}^{n}\left(1+\left|g_{i}\right|^{2}\right)^{m_{i}}|\omega|^{2},
$$

where $G=\left(g_{1}, \ldots, g_{n}\right): \Sigma \rightarrow(\overline{\mathbf{C}})^{n}=\underbrace{\overline{\mathbf{C}} \times \cdots \times \overline{\mathbf{C}}}_{n}$ is a holomorphic map,
ω is a holomorphic 1-from on Σ and each $m_{i}(i=1, \ldots, n)$ is a positive integer.
Assume that $g_{i_{1}}, \ldots, g_{i_{k}}\left(1 \leq i_{1}<\cdots<i_{k} \leq n\right)$ are nonconstant and the others are constant. If the metric is complete and each $g_{i_{l}}(l=1, \cdots, k)$ omits $q_{i_{l}}>2$ distinct values, then we have

$$
\sum_{l=1}^{k} \frac{m_{i_{l}}}{q_{i_{l}}-2} \geq 1
$$

Corollary: the Fujimoto theorem

Corollary (Fujimoto (1988))

$X: \Sigma \rightarrow \mathbf{R}^{4}:$ a complete nonflat minimal immersion
$G=\left(g_{1}, g_{2}\right): \Sigma \rightarrow \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map
(1) Assume that g_{1} and g_{2} are nonconstant and omit q_{1} and q_{2} values respectively. If $q_{1}>2$ and $q_{2}>2$, then we have

$$
\frac{\boxed{1}}{q_{1}-2}+\frac{\boxed{1}}{q_{2}-2} \geq 1 .
$$

(2) If either g_{1} or g_{2}, say g_{2} is constant, then g_{1} can omit at most 3 values.

Note: These results (1) and (2) are optimal.

Algebraic Minimal Surfaces in \mathbf{R}^{4}

Theorem (Huber (1957) and Osserman (1964))

$X: \Sigma \rightarrow \mathbf{R}^{4}$: a complete minimal immersion with finite total curvature Then it satisfies

- Σ is conformally equivalent to $\bar{\Sigma}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\}$, where $\bar{\Sigma}_{\gamma}$ is a closed Riemann surface of genus γ and $p_{1}, \ldots, p_{k} \in \bar{\Sigma}_{\gamma}$,
- The W-data $\left(\omega, g_{1}, g_{2}\right)$ can be extended meromorphically to $\bar{\Sigma}_{\gamma}$.

Definition

When the total curvature of a complete minimal surface is finite, the surface is called an algebraic minimal surface.

Effective Estimate for $\nu_{g_{1}}$ and $\nu_{g_{2}}$

Theorem (Hoffman-Meeks (1980), K. (2009))

$X: \Sigma=\bar{\Sigma}_{\gamma} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbf{R}^{4}:$ an algebraic minimal surface
$G=\left(g_{1}, g_{2}\right): \Sigma \rightarrow \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map
d_{i} : the degree of $g_{i}(i=1,2)$
$\nu_{g_{i}}$: the total weight of a number of totally ramified values of $g_{i}(i=1,2)$
(1) If g_{1} and g_{2} are nonconstant, then $\nu_{g_{1}} \leq 2$, or $\nu_{g_{2}} \leq 2$, or

$$
\frac{1}{\nu_{g_{1}}-2}+\frac{1}{\nu_{g_{2}}-2} \geq R_{1}+R_{2}>1, \quad R_{i}=\frac{d_{i}}{2 \gamma-2+k} \quad(i=1,2)
$$

(2) If one of g_{1} and g_{2} is constant, say g_{2} is constant, then

$$
\nu_{g_{1}} \leq 2+\frac{1}{R_{1}} \quad \frac{1}{R_{1}}=\frac{2 \gamma-2+k}{d_{1}}<1 .
$$

Sharpness of Ramification Estimate

Example (Watanabe (2022))

$\Sigma=\mathbf{C} \backslash\{ \pm i\}$. The W-data is defined by

$$
\left(\omega, g_{1}, g_{2}\right)=\left(\frac{\left(z^{2}-1\right)^{2}}{\left(z^{2}+1\right)^{2}} d z, \frac{z^{2}+a}{z^{2}-1}, \frac{z^{2}+b}{z^{2}-1}\right)
$$

where $a, b \in \mathbf{R}$ satisfy $(a+1)(b+1)=8$.
Then we obtain algebraic minimal surfaces with $\nu_{g_{1}}=2.5$ and $\nu_{g_{2}}=2.5$.
This surface is optimal for (1) in the previous estimate for $\left(\gamma, k, d_{1}, d_{2}\right)=(0,3,2,2)$. Indeed,

$$
R_{1}+R_{2}=\frac{2}{0-2+3}+\frac{2}{0-2+3}=4, \quad \frac{1}{\nu_{g_{1}}-2}+\frac{1}{\nu_{g_{2}}-2}=4 .
$$

We also do not know that this estimate is optimal for all topological cases.

Corollary: Rigidity Theorem (1)

Corollary (Hoffman-Meeks (1980))

$X: \Sigma \rightarrow \mathbf{R}^{4}$: an algebraic minimal surface
$G=\left(g_{1}, g_{2}\right): \Sigma \rightarrow \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map
(1) If both g_{1} and g_{2} omit more than 3 values, then $X(\Sigma)$ must be a plane,
(2) If one of g_{1} and g_{2} is constant, say g_{2} is constant and if g_{1} omits more than 2 values, then $X(\Sigma)$ must be a plane.

Example (Sharpness for (2) in Corollary)

$\Sigma=\mathbf{C} \backslash\{0\}$. The W-data is defined by

$$
\left(\omega, g_{1}, g_{2}\right)=\left(\frac{d z}{z^{2}}, z, c\right), \quad c: \text { constant }
$$

then we obtain an algebraic minimal surface of which g_{1} omits 2 values $0, \infty$.

Corollary: Rigidity Theorem (2)

Proposition (Watanabe (2022))

$X: \Sigma=\bar{\Sigma}_{0} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbf{R}^{4}:$ an algebraic minimal surface of genus 0 $G=\left(g_{1}, g_{2}\right): \Sigma \rightarrow \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map
If both g_{1} and g_{2} are nonconstant, one of the following holds:

$$
\text { (i) } \nu_{g_{1}} \leq 2, \quad \text { (ii) } \nu_{g_{2}} \leq 2, \quad \text { (iii) } \frac{1}{\nu_{g_{1}}-2}+\frac{1}{\nu_{g_{2}}-2}>2 \text {. }
$$

Corollary (Watanabe (2022))

$X: \Sigma=\bar{\Sigma}_{0} \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbf{R}^{4}$: an algebraic minimal surface of genus 0
$G=\left(g_{1}, g_{2}\right): \Sigma \rightarrow \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map
If both g_{1} and g_{2} are nonconstant, one of the following holds:

$$
\text { (i) } D_{g_{1}} \leq 2, \quad \text { (ii) } D_{g_{2}} \leq 2
$$

Corollary: Rigidity Theorem (3)

Example (Watanabe (2022))

$\Sigma=\mathbf{C} \backslash\{0\}$. The W-data is defined by

$$
\left(\omega, g_{1}, g_{2}\right)=\left(\frac{d z}{z^{2}}, a z,-\bar{a} z\right)
$$

where $a \in \mathbf{C} \backslash\{0\}$. Then we obtain algebraic minimal surfaces whose Gauss maps g_{1} and g_{2} omit 2 values, 0 and ∞ (i.e., $D_{g_{1}}=D_{g_{2}}=2$).

We do not know whether there exists an example with $D_{g_{1}}=D_{g_{2}}=3$ or not.

Outstanding Problem 1: Flat Point Conjecture

Problem 1

If the Gauss map of a complete minimal surface in \mathbf{R}^{3} has just 4 omitted values, then the Gaussian curvature is strictly negative on everywhere (i.e. the surface has no flat point)?

In other words, a complete minimal surface in \mathbf{R}^{3} has at least one flat point, then its Gauss map omits at most 3 values.

Note:

This conjecture is true if a complete minimal surface is pseudo-algebraic (this class contains the Schrek surface) because we have

$$
D_{g} \leq 2+\frac{2}{R}-\frac{l}{d}, \quad \frac{1}{R}=\frac{\gamma-1+(k / 2)}{d} \leq 1
$$

Here l is the number of (not necessarily totally) ramified values other than omitted values of g.

Outstanding Problem 2: Nonorientable Case

$\widehat{\Sigma}$: a nonorientable Riemann surface, that is, a nonorientable surface endowed with an atlas whose transition maps are holomorphic and antiholomorphic. $\pi: \Sigma \rightarrow \widehat{\Sigma}$: the conformal oriented two sheeted covering of $\widehat{\Sigma}$

Then a conformal map $\widehat{X}: \widehat{\Sigma} \rightarrow \mathbf{R}^{3}$ be a nonorientable minimal immersion if $X=\widehat{X} \circ \pi$ is a conformal minimal immersion.
$I: \Sigma \rightarrow \Sigma:$ the antiholomorphic order two deck transformation associated with π If g is the Gauss map of the surface $X=\widehat{X} \circ \pi$, then we have

$$
g \circ I=-\frac{1}{\bar{g}} .
$$

Nonorientable Case, continued

Thus there exists a unique map $\hat{g}: \widehat{\Sigma} \rightarrow \mathbf{R P}^{2} \equiv \overline{\mathbf{C}} /\langle I\rangle$ satisfying

$$
\hat{g} \circ \pi=p_{0} \circ g
$$

where $p_{0}: \overline{\mathbf{C}} \rightarrow \overline{\mathbf{C}} /\langle I\rangle$ is the natural projection.
$\rightarrow \quad$ We call \hat{g} the generalized Gauss map of $\widehat{X}(\widehat{\Sigma})$.

Theorem (F. J. López and Martín (2000))

The generalized Gauss map of a complete nonorientable minimal surface in \mathbf{R}^{3} can omit at most 2 points of $\mathbf{R} \mathbf{P}^{2}$.

Nonorientable Case, continued

Note:

- "2" comes from the Fujimoto theorem.
- López and Martín proved that there exist complete nonorientable minimal surface in \mathbf{R}^{3} whose generalized Gauss map omits 2 points in $\mathbf{R P} \mathbf{P}^{2}$.

Problem 2

Are there any complete nonorientable minimal surface with finite total curvature whose generalized Gauss map omits 1 point in $\mathbf{R P}^{2}$?

Note: From the Osserman theorem, the case of finite total curvature, we know that the generalized Gauss map can omit at most 1 point in $\mathbf{R} \mathbf{P}^{2}$.

Summary

- New example of algebraic minimal surfaces with $\nu_{g}=2.5$ (By Mr. Mototsugu Watanabe)
- A geometric interpretation for D_{g} and ν_{g} (Several cases)
- Outstanding Problems
(The Osserman problem, Flat point conjecture, Nonorientable case)
- (in progress) A geometric interpretation for the maximum number of omitted hyperplanes of the generalized Gauss map of complete minimal surfaces in \mathbf{R}^{n} (By Ha-K-Watanabe)

