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§1. Meromorphic Functions on C

Theorem (Little Picard Theorem)

f : C → C := C ∪ {∞}: a nonconstant meromorphic function
Df := #(C\f(C)): the number of omitted values of f
Then

Df ≤ 2. (sharp)

Example (Df = 2)

f(z) = ez, omitted values of f : 0, ∞ (2 values)

The least upper bound “2” has a geometric interpretation.
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A Geometric Interpretation

Theorem (S. S. Chern (1960), Ahlfors, etc.)

f : C → Σγ : a nonconstant holomorphic map
Here, Σγ : a closed Riemann surface of genus γ
Df := #(Σγ\f(C)): the number of omitted values of f
Then

Df ≤ χ(Σγ) = (The Euler Characteristic of Σγ) = 2− 2γ,

such that

γ = 0: Df ≤ 2 (Little Picard Theorem),

γ = 1: Df = 0 (f is surjective),

γ ≥ 2: f does not exist.

Y. Kawakami (Kanazawa University) Gauss map of Minimal Surfaces Nov. 8, 2022 4 / 37



A Generalization of the Picard Theorem

Theorem (R. Nevanlinna (1929), Robinson (1939))

f : C → C: a nonconstant meromorphic function
q ∈ Z+, α1, . . . , αq ∈ C distinct.
Suppose that all αj-points of f have multiplicity at least νj . Then

q∑
j=1

(
1− 1

νj

)
≤ 2.

If f does not take a value αj , then we can take νj = ∞ and
1− (1/νj) = 1.

Note:
The inequality corresponds to the defect relation in Nevanlinna theory.
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Notion of Totally Ramified Value and Its Weight

Definition

f : Σ → C: a meromorphic function, Here Σ is a Riemann surface.
ν (≥ 2) ∈ Z+ ∪ {∞}
α ∈ C is a totally ramified value of f of order ν
if f = α has no root of multiplicity less than ν.

We regard omitted values as totally ramified values of order ∞
because ν = ∞ means that f = α has no root of any order.

Definition (Varilon (1929))

Same situation as above.
Then the weight for a totally ramified value of f of order ν is definied by

1− 1

ν
.

By the total weight νf of a number of totally ramified values of f ,
we mean the sum of their weights.
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Ramification Estimate

Theorem (Ramification estimate)

f : C → C: a nonconstant meromorphic function
Df := #(C\f(C)): the number of omitted values of f
νf : the total weight of a number of totally ramified values of f
Then

Df ≤ νf ≤ 2. (sharp)

Example

The Weierstrass ℘-function has exactly 4 totally ramified values of order 2

e1 := ℘(ω/2), e2 := ℘(ω′/2), e3 := ℘((ω + ω′)/2), ∞.

Here the lattice L = Zω + Zω′. Thus ν℘ = 4(1− (1/2)) = 2.

In this case, the least upper bound for νf coincides with Df .
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§2. Gauss Map of Complete Minimal Surfaces in R3
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Basic Facts of Minimal Surfaces

Σ: a connected, oriented real 2-dimensional C∞-manifold,
X : Σ → Rn: a conformal minimal immersion.
Then Σ may be considered as a Riemann surface.

ds2: the induced metric from the Euclidean metric of Rn

Theorem

X(Σ) is minimal ⇐⇒ ∆ds2X ≡ 0.

Corollary

There exists no compact minimal surface without boundary in Rn.
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Enneper-Weierstrass Representation

Σ: an open Riemann surface
ω = hdz: a holomorphic 1-form, g : Σ → C a meromorphic function
Assume that

the poles of g of order k coincides exactly with the zeros of ω of order
2k (Regularity condition)

ϕ1 := (1− g2)ω, ϕ2 := i(1 + g2)ω, ϕ3 := 2gω.
∀γ ∈ H1(Σ;Z), Re

∫
γ ϕi = 0 (i = 1, 2, 3) (Period condition)

Then

X = Re

∫
(ϕ1, ϕ2, ϕ3) : Σ → R3

is a conformal minimal immersion whose Gauss map is the map g.

X(Σ) is minimal ⇐⇒ The Gauss map g is meromorphic.
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Enneper-Weierstrass Representation, continued

We call the pair (ω = hdz, g) the Weierstrass data (W-data) of X(Σ).

induced metric from R3: ds2 = (1 + |g|2) 2 |ω|2,

Gaussian curvature w.r.t ds2: Kds2 := − 4|g′|2

|h|2(1 + |g|2)4
≤ 0,

Total curvature w.r.t ds2 (z = u+ iv)

τ(X) :=

∫
Σ
Kds2dA = −

∫
Σ

4|g′|2

(1 + |g|2)2
du ∧ dv = −

∫
Σ
g∗ωF.S..

|τ(X)| is the area of g(Σ) w.r.t. the metric induced from the Fubini-Study
metric ωF.S. of C.

Geometric properties of minimal surfaces can be represented by
complex analytic data.
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Problem

Problem

Given a complete minimal surface, not a plane,
what can be said about the size of the set of points on C
omitted by its Gauss map?

(X(Σ), ds2) is complete if
∫
γ ds diverges for every differentiable

divergent path γ on Σ.

X(Σ) is a plane ⇐⇒ The Gauss map g is constant and Kds2 ≡ 0.
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The Fujimoto Theorem

Theorem (Fujimoto (1988, 1992))

X : Σ → R3 a complete conformal minimal immersion
g : Σ → C its Gauss map
Dg := #(C\g(Σ)): the number of omitted values of g
νg: the total weight of a number of totally ramified values of g
Then

Dg ≤ νg ≤ 4. (sharp)

Scherk surface
Σ = the universal covering of C\{±1,±i}
W-data (ω, g) = (4dz/(z4 − 1),−z). Thus Dg = 4.
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A Geometric Interpretation

Theorem (cf. K. (2013))

Σ: an open Riemann surface with the conformal metric

ds2 := (1 + |g|2) m |ω|2. (m ∈ Z+)

If the metric ds2 is complete and g is nonconstant,
then g can omit at most m + 2 distinct values.

Remark

Geometric meaning of “2” in “ m +2” is the Euler characteristic of the
Riemann sphere C.

The least upper bound for Dg: “4” = 2 + χ(C)
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Algebraic Minimal Surfaces

Theorem (Huber (1957) and Osserman (1964))

X : Σ → R3: a complete minimal immersion with finite total curvature
Then it satisfies

Σ is conformally equivalent to Σγ\{p1, . . . , pk}, where Σγ is a closed
Riemann surface of genus γ and p1, . . . , pk ∈ Σγ ,

The W-data (ω, g) can be extended meromorphically to Σγ .

Definition

When the total curvature of a complete minimal surface is finite,
the surface is called an algebraic minimal surface.
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The Osserman Problem

Theorem (Osserman (1964))

X : Σ → R3: an algebraic minimal surface
g : Σ → C: its Gauss map
Dg := #(C\g(Σ)): the number of omitted values of g
Then

Dg ≤ 3.

Problem (A Survey of Minimal Surfaces, page 90)

Which is the least upper bound for Dg, “2” or “3”?

Example of Dg = 2: Catenoid Σ = C\{0}, (ω, g) = (dz/z2, z)
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Nonexsitence for Dg = 3

Theorem (Osserman (1964))

X : Σ = Σγ\{p1, . . . , pk} → R3: an algebraic minimal surface
g : Σ → C: its Gauss map with degree d
If Dg = 3, then

γ ≥ 1, and d ≥ k ≥ 3,

If γ = 1, then d = k and each end is an embedded end,

|τ(X)| ≥ 12π.

Theorem

There exist NO algebraic minimal surface with Dg = 3 when

|τ(X)| = 12π （Weitsman and Xavier (1987)）,

|τ(X)| = 16π (Fang (1993)).

Conjecture A: The least upper bound for Dg is “2”?
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Example with νg = 2.5 (1)

Conjecture B: The least upper bound for νg is “2”?

Conjecture B is not correct.

Example (Miyaoka-Sato (1994) and K. (2006))

Σ = C\{±i}. The W-data is defined by

(ω, g) =

(
(z2 + t2)2

(z2 + 1)2
dz, σ

z2 + 1 + a(t− 1)

z2 + t

)
, a, t ∈ R, (a− 1)(t− 1) ̸= 0,

where σ2 = (t+ 3)/a{(t− 1)a+ 4}. For any satisfying σ2 < 0, we obtain an
algebraic minimal surface of which Gauss map omits 2 values σ, σa. Moreover,
g(0) is a totally ramified value of order 2. Since deg g = 2,

νg = 1 + 1 +

(
1− 1

2

)
= 2.5.
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Example with νg = 2.5 (2)

Drawn by Prof. Shoichi Fujimori
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Another Example with νg = 2.5 (1)

Mototsugu Watanabe (my student) finds a new example with νg = 2.5 !

Example (Watanabe (2022))

Σ = C\{0,±i}. The W-data is defined by

(ω, g) =

(
{(b− a)z4 + 4(b− 1)z2 + 4(b− 1)}2

z2(z2 + 1)2
dz, σ

(b− a)z4 + 4a(b− 1)z2 + 4a(b− 1)

(b− a)z4 + 4(b− 1)z2 + 4(b− 1)

)
,

where a, b ∈ R\{1} s.t. a ̸= b and σ2 = (5a+ 11b− 16)/(16ab− 11a− 5b) < 0.
Then we obtain algebraic minimal surfaces of which Gauss map omits 2 values σ,
σa. Moreover, σb = g(±

√
2i) is a totally ramified value of order 2. Thus

νg = 1 + 1 +

(
1− 1

2

)
= 2.5.
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Another Example with νg = 2.5 (2)

Drawn by Prof. Shoichi Fujimori
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Effective Estimate for Dg and νg

Theorem (K-Kobayashi-Miyaoka (2008))

X : Σ = Σγ\{p1, . . . , pk} → R3: an algebraic minimal surface
g : Σ → C: its Gauss map with degree d
Dg := #(C\g(Σ)): the number of omitted values of g
νg: the total weight of a number of totally ramified values of g
Then

Dg ≤ νg ≤ 2 +
2

R
,

1

R
=

γ − 1 + (k/2)

d
< 1.

Point: Applying the theory of algebraic curves

the Riemann-Hurwitz formula (estimate for Dg and νg)

the Riemann-Roch theorem → the Chern-Osserman inequality
(estimate for 1/R)
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Sharpness of KKM-estimate for Some Topological Cases

(1) (γ, k, d) = (0, 3, 2) · · · R−1 = (0− 1 + (3/2))/2 = 1/4

2 +
2

R
= 2.5 (sharp by the Miyaoka-Sato example)

(2) (γ, k, d) = (0, 4, 4) · · · R−1 = (0− 1 + (4/2))/4 = 1/4

2 +
2

R
= 2.5 (sharp by the Watanabe example)

We do not know that this estimate is optimal for all topological cases.
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§3. Gauss Map of Complete Minimal Surfaces in R4

X = (x1, x2, x3, x4) : Σ → R4: a conformal minimal immersion
Set ϕi = ∂xi (i = 1, 2, 3, 4)
If we set

ω = ϕ1 − iϕ2, g1 =
ϕ3 + iϕ4

ϕ1 − iϕ2
, g2 =

−ϕ3 + iϕ4

ϕ1 − iϕ2
,

then ω is a holomorphic 1-form, g1 and g2 are meromorphic functions on
Σ.
In particular, G = (g1, g2) : Σ → C×C coincides with the Gauss map of
X(Σ) in R4.
Furthermore, the induced metric from R4 is represented as

ds2 = (1 + |g1|2) 1 (1 + |g2|2) 1 |ω|2.
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A Geometric Interpretation

Theorem (Aiyama-Akutagawa-Imagawa-K (2016))

Σ: an open Riemann surface with the conformal metric

ds2 =

n∏
i=1

(1 + |gi|2)mi |ω|2,

where G = (g1, . . . , gn) : Σ → (C)n = C× · · · ×C︸ ︷︷ ︸
n

is a holomorphic map,

ω is a holomorphic 1-from on Σ and each mi (i = 1, . . . , n) is a positive
integer.
Assume that gi1 , . . . , gik (1 ≤ i1 < · · · < ik ≤ n) are nonconstant and the
others are constant. If the metric is complete and each gil (l = 1, · · · , k)
omits qil > 2 distinct values, then we have

k∑
l=1

mil

qil − 2
≥ 1.
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Corollary: the Fujimoto theorem

Corollary (Fujimoto (1988))

X : Σ → R4: a complete nonflat minimal immersion
G = (g1, g2) : Σ → C×C: its Gauss map

(1) Assume that g1 and g2 are nonconstant and omit q1 and q2 values
respectively. If q1 > 2 and q2 > 2, then we have

1

q1 − 2
+

1

q2 − 2
≥ 1.

(2) If either g1 or g2, say g2 is constant, then g1 can omit at most 3
values.

Note: These results (1) and (2) are optimal.
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Algebraic Minimal Surfaces in R4

Theorem (Huber (1957) and Osserman (1964))

X : Σ → R4: a complete minimal immersion with finite total curvature
Then it satisfies

Σ is conformally equivalent to Σγ\{p1, . . . , pk}, where Σγ is a closed
Riemann surface of genus γ and p1, . . . , pk ∈ Σγ ,

The W-data (ω, g1, g2) can be extended meromorphically to Σγ .

Definition

When the total curvature of a complete minimal surface is finite,
the surface is called an algebraic minimal surface.
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Effective Estimate for νg1 and νg2

Theorem (Hoffman-Meeks (1980), K. (2009))

X : Σ = Σγ\{p1, . . . , pk} → R4: an algebraic minimal surface
G = (g1, g2) : Σ → C×C: its Gauss map
di: the degree of gi (i = 1, 2)
νgi : the total weight of a number of totally ramified values of gi (i = 1, 2)

(1) If g1 and g2 are nonconstant, then νg1 ≤ 2, or νg2 ≤ 2, or

1

νg1 − 2
+

1

νg2 − 2
≥ R1 +R2 > 1, Ri =

di
2γ − 2 + k

(i = 1, 2),

(2) If one of g1 and g2 is constant, say g2 is constant, then

νg1 ≤ 2 +
1

R1

1

R1
=

2γ − 2 + k

d1
< 1.
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Sharpness of Ramification Estimate

Example (Watanabe (2022))

Σ = C\{± i}. The W-data is defined by

(ω, g1, g2) =

(
(z2 − 1)2

(z2 + 1)2
dz,

z2 + a

z2 − 1
,
z2 + b

z2 − 1

)
,

where a, b ∈ R satisfy (a+ 1)(b+ 1) = 8.
Then we obtain algebraic minimal surfaces with νg1 = 2.5 and νg2 = 2.5.
This surface is optimal for (1) in the previous estimate
for (γ, k, d1, d2) = (0, 3, 2, 2). Indeed,

R1 +R2 =
2

0− 2 + 3
+

2

0− 2 + 3
= 4,

1

νg1 − 2
+

1

νg2 − 2
= 4.

We also do not know that this estimate is optimal for all topological cases.
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Corollary: Rigidity Theorem (1)

Corollary (Hoffman-Meeks (1980))

X : Σ → R4: an algebraic minimal surface
G = (g1, g2) : Σ → C×C: its Gauss map

(1) If both g1 and g2 omit more than 3 values, then X(Σ) must be a
plane,

(2) If one of g1 and g2 is constant, say g2 is constant and if g1 omits
more than 2 values, then X(Σ) must be a plane.

Example (Sharpness for (2) in Corollary)

Σ = C\{0}. The W-data is defined by

(ω, g1, g2) =

(
dz

z2
, z, c

)
, c: constant

then we obtain an algebraic minimal surface of which g1 omits 2 values 0,∞.
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Corollary: Rigidity Theorem (2)

Proposition (Watanabe (2022))

X : Σ = Σ0\{p1, . . . , pk} → R4: an algebraic minimal surface of genus 0
G = (g1, g2) : Σ → C×C: its Gauss map
If both g1 and g2 are nonconstant, one of the following holds:

(i) νg1 ≤ 2, (ii) νg2 ≤ 2, (iii)
1

νg1 − 2
+

1

νg2 − 2
> 2.

Corollary (Watanabe (2022))

X : Σ = Σ0\{p1, . . . , pk} → R4: an algebraic minimal surface of genus 0
G = (g1, g2) : Σ → C×C: its Gauss map
If both g1 and g2 are nonconstant, one of the following holds:

(i)Dg1 ≤ 2, (ii)Dg2 ≤ 2.
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Corollary: Rigidity Theorem (3)

Example (Watanabe (2022))

Σ = C\{0}. The W-data is defined by

(ω, g1, g2) =

(
dz

z2
, az, −āz

)
,

where a ∈ C\{0}. Then we obtain algebraic minimal surfaces whose
Gauss maps g1 and g2 omit 2 values, 0 and ∞ (i.e., Dg1 = Dg2 = 2).

We do not know whether there exists an example with Dg1 = Dg2 = 3
or not.
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Outstanding Problem 1: Flat Point Conjecture

Problem 1

If the Gauss map of a complete minimal surface in R3 has just 4 omitted
values, then the Gaussian curvature is strictly negative on everywhere (i.e.
the surface has no flat point)?

In other words, a complete minimal surface in R3 has at least one flat
point, then its Gauss map omits at most 3 values.

Note:
This conjecture is true if a complete minimal surface is pseudo-algebraic
(this class contains the Schrek surface) because we have

Dg ≤ 2 +
2

R
− l

d
,

1

R
=

γ − 1 + (k/2)

d
≤ 1.

Here l is the number of (not necessarily totally) ramified values other than
omitted values of g.
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Outstanding Problem 2: Nonorientable Case

Σ̂: a nonorientable Riemann surface, that is,
a nonorientable surface endowed with an atlas whose transition maps are
holomorphic and antiholomorphic.
π : Σ → Σ̂: the conformal oriented two sheeted covering of Σ̂

Then a conformal map X̂ : Σ̂ → R3 be a nonorientable minimal immersion
if X = X̂ ◦ π is a conformal minimal immersion.

I : Σ → Σ: the antiholomorphic order two deck transformation associated with π

If g is the Gauss map of the surface X = X̂ ◦ π, then we have

g ◦ I = −1

ḡ
.
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Nonorientable Case, continued

Thus there exists a unique map ĝ : Σ̂ → RP2 ≡ C/⟨I⟩ satisfying

ĝ ◦ π = p0 ◦ g,

where p0 : C → C/⟨I⟩ is the natural projection.

→ We call ĝ the generalized Gauss map of X̂(Σ̂).

Theorem (F. J. López and Mart́ın (2000))

The generalized Gauss map of a complete nonorientable minimal surface in
R3 can omit at most 2 points of RP2.
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Nonorientable Case, continued

Note:

“2” comes from the Fujimoto theorem.

López and Mart́ın proved that there exist complete nonorientable
minimal surface in R3 whose generalized Gauss map omits 2 points in
RP2.

Problem 2

Are there any complete nonorientable minimal surface with finite total
curvature whose generalized Gauss map omits 1 point in RP2?

Note: From the Osserman theorem, the case of finite total curvature, we
know that the generalized Gauss map can omit at most 1 point in RP2.
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Summary

New example of algebraic minimal surfaces with νg = 2.5
(By Mr. Mototsugu Watanabe)

A geometric interpretation for Dg and νg (Several cases)

Outstanding Problems
(The Osserman problem, Flat point conjecture, Nonorientable case)

(in progress) A geometric interpretation for the maximum number of
omitted hyperplanes of the generalized Gauss map of complete
minimal surfaces in Rn (By Ha-K-Watanabe)
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