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We will give a brief survey of recent studies on value distribution of
the Gauss map of complete minimal surfaces in Euclidean space. J

@ Meromorphic Functions on C

o A geometric interpretation for the little Picard theorem
o Notion of Totally ramified value and its weight

@ Gauss Map of Complete Minimal Surfaces in R?

o A geometric interpretation for the Fujimoto theorem
o Ramification estimate for the Gauss map of algebraic case

@ Gauss Map of Complete Minimal Surfaces in R*

o A geometric interpretation for the Fujimoto theorem
o Ramification estimate for the Gauss map of algebraic case

@ Outstanding Problems
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§1. Meromorphic Functions on C

Theorem (Little Picard Theorem)

f: C— C:=CuU{oc}: a nonconstant meromorphic function
Dy := #(C\f(C)): the number of omitted values of f
Then

f(z) =¢€*,  omitted values of f: 0, co (2 values)

The least upper bound “2" has a geometric interpretation. J
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A Geometric Interpretation

Theorem (S. S. Chern (1960), Ahlfors, etc.)
f:C— iy: a nonconstant holomorphic map

Here, Y : a closed Riemann surface of genus vy

Dy = #(iy\f(C)): the number of omitted values of f
Then

Dy < x(Z,) = (The Euler Characteristic of £,) =2 — 27,

such that
e v=0: Dy <2 (Little Picard Theorem),
e y=1: Dy =0 (f is surjective),
@ v > 2: f does not exist.
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A Generalization of the Picard Theorem

Theorem (R. Nevanlinna (1929), Robinson (1939))

f: C — C: a nonconstant meromorphic function
q€Zy, o,...,aq4 € C distinct.
Suppose that all aj-points of f have multiplicity at least v;. Then

q
Z (1 — l) < 2.
i=1 v

If f does not take a value o, then we can take v; = oo and
1—(1/v;) =1.

Note:
The inequality corresponds to the defect relation in Nevanlinna theory.
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Notion of Totally Ramified Value and Its Weight

Definition

f: ¥ — C: a meromorphic function, Here ¥ is a Riemann surface.
v(>2)eZiU{oco}

«a € C is a totally ramified value of f of order v
if f = «a has no root of multiplicity less than v.

We regard omitted values as totally ramified values of order co
because v = co means that f = a has no root of any order.

Definition (Varilon (1929))

Same situation as above.
Then the weight for a totally ramified value of f of order v is definied by

1
1——.
v
By the total weight v of a number of totally ramified values of f,
we mean the sum of their weights.
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Ramification Estimate

Theorem (Ramification estimate)

f: C — C: a nonconstant meromorphic function
Dy := #(C\ f(C)): the number of omitted values of f
vy: the total weight of a number of totally ramified values of f
Then
Dy <vy<2. (sharp)

Example

The Weierstrass g-function has exactly 4 totally ramified values of order 2

e1 1= p(w/2), ex:=pW'/2), e3:=p(w+uw)/2), oo.

Here the lattice L = Zw + Zw'. Thus v, = 4(1 - (1/2)) = 2.

In this case, the least upper bound for vy coincides with Dy. J
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§2. Gauss Map of Complete Minimal Surfaces in R?
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Basic Facts of Minimal Surfaces

Y a connected, oriented real 2-dimensional C'°°-manifold,
X: ¥ — R"™ a conformal minimal immersion.
Then X may be considered as a Riemann surface.

ds?: the induced metric from the Euclidean metric of R"

X(X) is minimal <— Ag2X =0.

There exists no compact minimal surface without boundary in R".
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Enneper-Weierstrass Representation

3. an open Riemann surface
w = hdz: a holomorphic 1-form, g: 3 — C a meromorphic function
Assume that

@ the poles of g of order k coincides exactly with the zeros of w of order
2k (Regularity condition)

0 ¢1:=(1—g*>w, g2 :=i(1+ g*)w, ¢3 := 2gw.
Vy € Hi(%;Z), Re [ ¢ =0 (i = 1,2,3) (Period condition)
Then

X=Re/(¢1,¢2,¢3):2—>R3

is a conformal minimal immersion whose Gauss map is the map g.

X (X) is minimal <= The Gauss map g is meromorphic. )
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Enneper-Weierstrass Representation, continued

We call the pair (w = hdz, g) the Weierstrass data (W-data) of X (X).

o induced metric from R3: ds? = (1 + |g|2)|w|2,
o Gaussian curvature w.r.t ds?: K g = —L,F <
’ R+ gt

o Total curvature w.r.t ds? (z = u + iv)

2
/ Kge2dA = —/ 49 ——=——duAdv= —/ g wEs..
(L+1g%)? >

|7(X)| is the area of g(X) w.r.t. the metric induced from the Fubini-Study
metric wg.s. of C.

Geometric properties of minimal surfaces can be represented by
complex analytic data.

J
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Problem

Given a complete minimal surface, not a plane,
what can be said about the size of the set of points on C
omitted by its Gauss map?

o (X(X),ds?) is complete if f,y ds diverges for every differentiable
divergent path v on X.

e X(X) is a plane <= The Gauss map g is constant and K .2 = 0.

Nov. 8, 2022
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The Fujimoto Theorem

Theorem (Fujimoto (1988, 1992))

X: ¥ — R3 a complete conformal minimal immersion
g: ¥ — C jts Gauss map
Dy :=#(C\g(X)): the number of omitted values of g
vy: the total weight of a number of totally ramified values of g
Then
Dy <v, <4. (sharp)

Scherk surface
¥ = the universal covering of C\{#1, +i}
W-data (w, g) = (4dz/(2* — 1), —z). Thus D, = 4.
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A Geometric Interpretation

Theorem (cf. K. (2013))

>i: an open Riemann surface with the conformal metric
ds® = (1+ |gP w2, (m € Z4)

If the metric ds® is complete and g is nonconstant,
then g can omit at most + 2 distinct values.

Geometric meaning of “2" in ‘[ m 42" is the Euler characteristic of the
Riemann sphere C.

The least upper bound for D,: “4" = + x(C) J
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Algebraic Minimal Surfaces

Theorem (Huber (1957) and Osserman (1964))

X: 3 — R3: a complete minimal immersion with finite total curvature
Then it satisfies
o X is conformally equivalent to ¥, \{p1, ..., pkl, where 3., is a closed
Riemann surface of genus v and p1,...,py € X5,
o The W-data (w, g) can be extended meromorphically to iy.

Definition
When the total curvature of a complete minimal surface is finite,
the surface is called an algebraic minimal surface.

Nov. 8, 2022
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The Osserman Problem

Theorem (Osserman (1964))

X: ¥ — R3: an algebraic minimal surface

g: ¥ — C: its Gauss map

Dy :=#(C\g(X)): the number of omitted values of g
Then

D, <3.

Problem (A Survey of Minimal Surfaces, page 90)
Which is the least upper bound for Dy, “2" or “3"7?

Example of D, = 2: Catenoid ¥ = C\{0}, (w,g) = (dz/2?%,2)
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Nonexsitence for D, = 3

Theorem (Osserman (1964))

X: X =3 \{p1,....px} — R3: an algebraic minimal surface
g: X — C: its Gauss map with degree d
If Dy = 3, then

o~vy>1,andd>k >3,
o Ifv =1, then d = k and each end is an embedded end,
o |7(X)| > 12x.

There exist NO algebraic minimal surface with Dy = 3 when
o |7(X)| =12r (Weitsman and Xavier (1987)) ,
o |7(X)| =167 (Fang (1993)).

Conjecture A: The least upper bound for D, is “2"7 J
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Example with v, = 2.5 (1)

Conjecture B: The least upper bound for v, is “2"7 J

Conjecture B is not correct.

Example (Miyaoka-Sato (1994) and K. (2006))

Y = C\{+:i}. The W-data is defined by

.= <(22”2)2 dz Zz“*““‘”), at€R, (a—1)(t—1) £0,

(22 +1)2 0 22+t

where 02 = (t + 3)/a{(t — 1)a + 4}. For any satisfying 02 < 0, we obtain an
algebraic minimal surface of which Gauss map omits 2 values o, oa. Moreover,
g(0) is a totally ramified value of order 2. Since degg = 2,

1
ug=1+1+<1—§) =25,
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Example with v, = 2.5 (

Drawn by Prof. Shoichi Fujimori
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Another Example with v, = 2.5 (1)

Mototsugu Watanabe (my student) finds a new example with v, = 2.5 ! J

Example (Watanabe (2022))
¥ = C\{0, £i}. The W-data is defined by

)= {(b—a)z* +4(b—1)2% + 4(b — 1)}? d (b—a)z* +4a(b—1)z% +4a(b—1)
(w9) = 2(22 + 1)2 S ) At Ab—1)2+4(b—1) )

where a,b € R\{1} s.t. a # b and 02 = (5a + 11b — 16)/(16ab — 11a — 5b) < 0.
Then we obtain algebraic minimal surfaces of which Gauss map omits 2 values o,
oa. Moreover, ob = g(:l:ﬁi) is a totally ramified value of order 2. Thus

1
ug=1+1+<1—§) =25,
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Another Example with v, = 2.5 (2)

Drawn by Prof. Shoichi Fujimori
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Effective Estimate for D, and v,

Theorem (K-Kobayashi-Miyaoka (2008))

X: X =% \{p1,...,px} — R3: an algebraic minimal surface
g: ¥ — C: its Gauss map with degree d

Dy :=#(C\g(X)): the number of omitted values of g

vg: the total weight of a number of totally ramified values of g
Then

1 v—=1+(k/2)

= ——— <1

2
Dy=vy 22+ 5 3 d

Point: Applying the theory of algebraic curves
o the Riemann-Hurwitz formula (estimate for D, and v,)

o the Riemann-Roch theorem — the Chern-Osserman inequality
(estimate for 1/R)
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Sharpness of KKM-estimate for Some Topological Cases

(1) (v,k,d) =(0,3,2) --- R =(0-1+(3/2))/2=1/4

2
24 2
+R

(2) (v, k,d) =(0,4,4) --- R"1=(0—1+(4/2))/4=1/4

= 2.5 (sharp by the Miyaoka-Sato example)

2
2+ B= 2.5 (sharp by the Watanabe example)

We do not know that this estimate is optimal for all topological cases. )
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§3. Gauss Map of Complete Minimal Surfaces in R*

X = (2!, 2%,23,2%): ¥ — R*: a conformal minimal immersion
Set ¢; = 695 ( 1,2,3,4)
If we set

¢3 + iy = —¢3 + ig4

¢1 — i’ ¢1 —iga

then w is a holomorphic 1-form, g; and go are meromorphic functions on
3.

In particular, G = (g1,92): ¥ — C x C coincides with the Gauss map of
X(2) in R4
Furthermore, the induced metric from R* is represented as

a5 = (1 + 1) 1 g L wp.

w:¢1_i¢27 g1 =
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A Geometric Interpretation

Theorem (Aiyama-Akutagawa-Imagawa-K (2016))

>.: an open Riemann surface with the conformal metric

n

ds? = [T+ laif?)™ o,

i=

—

h = ceyGn)t 2 C)"=C x---x C is a hol hi !
where G = (g1,...,9n): X — (C) x -+- X C is a holomorphic map

n
w is a holomorphic 1-from on ¥ and each m; (i = 1,...,n) is a positive

integer.

Assume that g;,, ..., g;, (1 <iy <--- <1 <n) are nonconstant and the
others are constant. If the metric is complete and each g;, (I =1,--- k)
omits q;, > 2 distinct values, then we have

k e
— >,
qil_2_

=1
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Corollary: the Fujimoto theorem

Corollary (Fujimoto (1988))

X: ¥ — R*: a complete nonflat minimal immersion
G = (g1,92): ¥ — C x C: its Gauss map

(1) Assume that g1 and gy are nonconstant and omit g1 and qy values
respectively. If g1 > 2 and qo > 2, then we have

Q1—2 Q2—2_

(2) If either g1 or g2, say g is constant, then g1 can omit at most 3
values.

Note: These results (1) and (2) are optimal.
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Algebraic Minimal Surfaces in R*

Theorem (Huber (1957) and Osserman (1964))

X: ¥ — R*: a complete minimal immersion with finite total curvature
Then it satisfies
o X is conformally equivalent to ¥, \{p1, ..., pkl, where 3., is a closed
Riemann surface of genus v and p1,...,py € X5,
o The W-data (w, g1, g2) can be extended meromorphically to Ey.

Definition
When the total curvature of a complete minimal surface is finite,
the surface is called an algebraic minimal surface.

Nov. 8, 2022
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Effective Estimate for v,, and v,

Theorem (Hoffman-Meeks (1980), K. (2009))

X: ¥ =% \{p1,...,pr} — R*: an algebraic minimal surface
G = (g1,92): ¥ — C x C: its Gauss map
d;: the degree of g; (i =1,2)
Vg, the total weight of a number of totally ramified values of g; (i =1,2)
(1) If g1 and go are nonconstant, then vy, <2, or v4, <2, or
1 1 d;

>Ri+Ry>1, Ri=—""  (i=1,2
=2 T a2t B>l Ri=ormms (I=12)

(2) If one of g1 and g is constant, say go is constant, then

11 2y—2+k
Vp <24 = =D 2EE g

R R dq
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Sharpness of Ramification Estimate

Example (Watanabe (2022))
Y. = C\{%i}. The W-data is defined by

( ) (22 -1)2 22+a 22+5b
w = z
»d1, 92 (22+1)2 2 22 2l [P

where a,b € R satisfy (a + 1)(b+ 1) = 8.

Then we obtain algebraic minimal surfaces with v4, = 2.5 and vy, = 2.5.
This surface is optimal for (1) in the previous estimate

for (v,k,dy,ds) = (0,3,2,2). Indeed,

2 2 1 1
+ =4,
0—2+3  0-2+3 Vgr — 2 gy — 2

Ry + Ry =

We also do not know that this estimate is optimal for all topological cases. |
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Corollary: Rigidity Theorem (1)

Corollary (Hoffman-Meeks (1980))

X: ¥ — R*: an algebraic minimal surface

G=1(91,02): ¥ — C x C: its Gauss map

(1) If both g1 and ga omit more than 3 values, then X (X) must be a
plane,

(2) If one of g1 and go is constant, say ga is constant and if g1 omits
more than 2 values, then X (X) must be a plane.

Example (Sharpness for (2) in Corollary)
Y = C\{0}. The W-data is defined by

dz
(w,91,92) = | =5, 2, ¢|, ¢ constant
%

then we obtain an algebraic minimal surface of which g; omits 2 values 0, co.
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Corollary: Rigidity Theorem (2)

Proposition (Watanabe (2022))

X: % =%0\{p1,...,px} = R an algebraic minimal surface of genus 0
G = (g1,92): ¥ — C x C: its Gauss map
If both g1 and gy are nonconstant, one of the following holds:

1
(g, <2, (i)vg <2, (iii) 4 > 2.
Vg, — 2

Corollary (Watanabe (2022))

X: ¥ =3%o\{p1,...,pr} — R* an algebraic minimal surface of genus 0
G =(91,92): ¥ — C x C: its Gauss map
If both g1 and go are nonconstant, one of the following holds:

(i) ‘Dgl S 27 (ii) DQQ S 2.
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Corollary: Rigidity Theorem (3)

Example (Watanabe (2022))
¥ = C\{0}. The W-data is defined by

dz B
(wagth) = ?7 az, —az |,

where a € C\{0}. Then we obtain algebraic minimal surfaces whose
Gauss maps g1 and go omit 2 values, 0 and oo (i.e., Dy, = Dy, = 2).

We do not know whether there exists an example with Dy, = Dy, = 3 J
or not.
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QOutstanding Problem 1: Flat Point Conjecture

Problem 1

If the Gauss map of a complete minimal surface in R3 has just 4 omitted
values, then the Gaussian curvature is strictly negative on everywhere (i.e.
the surface has no flat point)?

In other words, a complete minimal surface in R? has at least one flat
point, then its Gauss map omits at most 3 values.
Note:
This conjecture is true if a complete minimal surface is pseudo-algebraic
(this class contains the Schrek surface) because we have
2 1 1 ~y-1+(k/2)
D, <24 =2 —=1""TW
9= R d R d -

Here [ is the number of (not necessarily totally) ramified values other than
omitted values of g.
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Outstanding Problem 2: Nonorientable Case

~

32 a nonorientable Riemann surface, that is,

a nonorientable surface endowed with an atlas whose transition maps are
holomorphic and antiholomorphic.

7: % — 3 the conformal oriented two sheeted covering of )

Then a conformal map X : ¥ — R? be a nonorientable minimal immersion
if X = X o is a conformal minimal immersion.

I: 3 — 3. the antiholomorphic order two deck transformation associated with =
If g is the Gauss map of the surface X = X o, then we have

1
gol =——.
g
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Nonorientable Case, continued

Thus there exists a unique map §: & — RP? = C/(I) satisfying

gom=pooy,
where pg: C — C/(I) is the natural projection.

—  We call § the generalized Gauss map of )A((f])

Theorem (F. J. Lépez and Martin (2000))

The generalized Gauss map of a complete nonorientable minimal surface in
R? can omit at most 2 points of RP?.
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Nonorientable Case, continued

Note:
@ "2" comes from the Fujimoto theorem.

o Lépez and Martin proved that there exist complete nonorientable
minimal surface in R? whose generalized Gauss map omits 2 points in
RP2.

Problem 2

Are there any complete nonorientable minimal surface with finite total
curvature whose generalized Gauss map omits 1 point in RP2?

Note: From the Osserman theorem, the case of finite total curvature, we
know that the generalized Gauss map can omit at most 1 point in RP?.
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o New example of algebraic minimal surfaces with v, = 2.5
(By Mr. Mototsugu Watanabe)

o A geometric interpretation for D, and v, (Several cases)

o Qutstanding Problems
(The Osserman problem, Flat point conjecture, Nonorientable case)
o (in progress) A geometric interpretation for the maximum number of

omitted hyperplanes of the generalized Gauss map of complete
minimal surfaces in R™ (By Ha-K-Watanabe)
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