Recent Development in Value Distribution Theory of the Gauss Map of Complete Minimal Surfaces

Yu KAWAKAMI (Joint work with Pham Hoang Ha and Mototsugu Watanabe)

Faculty of Mathematics and Physics, Kanazawa University

The 28th Symposium on Complex Geometry

We will give a brief survey of recent studies on value distribution of the Gauss map of complete minimal surfaces in Euclidean space.

- $\textcircled{\ } \bullet \ \ \mathsf{Meromorphic} \ \mathsf{Functions} \ \mathsf{on} \ \mathbf{C}$
 - A geometric interpretation for the little Picard theorem
 - Notion of Totally ramified value and its weight
- **②** Gauss Map of Complete Minimal Surfaces in ${f R}^3$
 - A geometric interpretation for the Fujimoto theorem
 - Ramification estimate for the Gauss map of algebraic case
- **③** Gauss Map of Complete Minimal Surfaces in \mathbf{R}^4
 - A geometric interpretation for the Fujimoto theorem
 - Ramification estimate for the Gauss map of algebraic case

Outstanding Problems

Theorem (Little Picard Theorem)

 $f: \mathbf{C} \to \overline{\mathbf{C}} := \mathbf{C} \cup \{\infty\}$: a nonconstant meromorphic function $D_f := \#(\overline{\mathbf{C}} \setminus f(\mathbf{C}))$: the number of omitted values of fThen

$$D_f \leq 2.$$
 (sharp)

Example $(D_f = 2)$

 $f(z) = e^z$, omitted values of f: 0, ∞ (2 values)

The least upper bound "2" has a geometric interpretation.

Theorem (S. S. Chern (1960), Ahlfors, etc.)

 $f: \mathbf{C} \to \overline{\Sigma}_{\gamma}$: a nonconstant holomorphic map Here, $\overline{\Sigma}_{\gamma}$: a closed Riemann surface of genus γ $D_f := \#(\overline{\Sigma}_{\gamma} \setminus f(\mathbf{C}))$: the number of omitted values of fThen

$$D_f \leq \chi(\overline{\Sigma}_{\gamma}) = ($$
The Euler Characteristic of $\overline{\Sigma}_{\gamma}) = 2 - 2\gamma$

such that

• $\gamma = 0$: $D_f \leq 2$ (Little Picard Theorem),

•
$$\gamma = 1$$
: $D_f = 0$ (f is surjective),

• $\gamma \geq 2$: f does not exist.

Theorem (R. Nevanlinna (1929), Robinson (1939))

 $f: \mathbf{C} \to \overline{\mathbf{C}}$: a nonconstant meromorphic function $q \in \mathbf{Z}_+, \alpha_1, \dots, \alpha_q \in \overline{\mathbf{C}}$ distinct. Suppose that all α_i -points of f have multiplicity at least ν_i . Then

$$\sum_{j=1}^q \left(1 - \frac{1}{\nu_j}\right) \le 2.$$

If f does not take a value $\alpha_j,$ then we can take $\nu_j=\infty$ and $1-(1/\nu_j)=1.$

Note:

The inequality corresponds to the defect relation in Nevanlinna theory.

Notion of Totally Ramified Value and Its Weight

Definition

$$\begin{split} f\colon \Sigma\to \overline{\mathbf{C}}: \text{ a meromorphic function, Here } \Sigma \text{ is a Riemann surface.} \\ \nu\,(\geq 2)\in \mathbf{Z}_+\cup\{\infty\} \\ \alpha\in\overline{\mathbf{C}} \text{ is a totally ramified value of } f \text{ of order } \nu \\ \text{if } f=\alpha \text{ has no root of multiplicity less than } \nu. \end{split}$$

We regard omitted values as totally ramified values of order ∞ because $\nu=\infty$ means that $f=\alpha$ has no root of any order.

Definition (Varilon (1929))

Same situation as above.

Then the weight for a totally ramified value of f of order ν is definied by

$$1-\frac{1}{\nu}.$$

By the total weight ν_f of a number of totally ramified values of f, we mean the sum of their weights.

Theorem (Ramification estimate)

 $f: \mathbf{C} \to \overline{\mathbf{C}}$: a nonconstant meromorphic function $D_f := \#(\overline{\mathbf{C}} \setminus f(\mathbf{C}))$: the number of omitted values of f ν_f : the total weight of a number of totally ramified values of fThen

$$D_f \le \nu_f \le 2.$$
 (sharp)

Example

The Weierstrass \wp -function has exactly 4 totally ramified values of order 2

$$e_1 := \wp(\omega/2), \quad e_2 := \wp(\omega'/2), \quad e_3 := \wp((\omega + \omega')/2), \quad \infty.$$

Here the lattice $L = \mathbf{Z}\omega + \mathbf{Z}\omega'$. Thus $\nu_{\wp} = 4(1 - (1/2)) = 2$.

In this case, the least upper bound for ν_f coincides with D_f .

Y. Kawakami (Kanazawa University)

Gauss map of Minimal Surfaces

$\S2$. Gauss Map of Complete Minimal Surfaces in ${f R}^3$

References

- 宮岡礼子著,極小曲面(共立叢書現代数学の潮流),共立出版, 2022年.
- 川上裕,藤森祥一著,極小曲面論入門,SGC ライブラリ 147,サイ エンス社,2019年.
- A. Alarcón, F. Forstnerič, F. J. López, Minimal Surfaces from a Complex Analytic Viewpoint, Springer, 2021

 Σ : a connected, oriented real 2-dimensional C^{∞} -manifold, $X \colon \Sigma \to \mathbf{R}^n$: a conformal minimal immersion. Then Σ may be considered as a Riemann surface.

 $ds^2:$ the induced metric from the Euclidean metric of ${\bf R}^n$

Theorem
$$X(\Sigma)$$
 is minimal $\iff \Delta_{ds^2} X \equiv 0.$

Corollary

There exists no compact minimal surface without boundary in \mathbf{R}^n .

 $\boldsymbol{\Sigma}:$ an open Riemann surface

 $\omega=hdz:$ a holomorphic 1-form, $g\colon\Sigma\to\overline{{\bf C}}$ a meromorphic function Assume that

• the poles of g of order k coincides exactly with the zeros of ω of order 2k (Regularity condition)

•
$$\phi_1 := (1 - g^2)\omega$$
, $\phi_2 := i(1 + g^2)\omega$, $\phi_3 := 2g\omega$.
 $\forall \gamma \in H_1(\Sigma; \mathbf{Z})$, Re $\int_{\gamma} \phi_i = 0$ $(i = 1, 2, 3)$ (Period condition)

Then

$$X = \mathsf{Re} \int (\phi_1, \phi_2, \phi_3) : \Sigma \to \mathbf{R}^3$$

is a conformal minimal immersion whose Gauss map is the map g.

 $X(\Sigma)$ is minimal \iff The Gauss map g is meromorphic.

Enneper-Weierstrass Representation, continued

We call the pair $(\omega = hdz, g)$ the Weierstrass data (W-data) of $X(\Sigma)$.

- induced metric from \mathbf{R}^3 : $ds^2 = (1 + |g|^2)^{2} |\omega|^2$,
- Gaussian curvature w.r.t ds^2 : $K_{ds^2} := -\frac{4|g'|^2}{|h|^2(1+|g|^2)^4} \le 0$,

• Total curvature w.r.t ds^2 (z = u + iv)

$$\tau(X) := \int_{\Sigma} K_{ds^2} dA = -\int_{\Sigma} \frac{4|g'|^2}{(1+|g|^2)^2} du \wedge dv = -\int_{\Sigma} g^* \omega_{\text{F.S.}}.$$

 $|\tau(X)|$ is the area of $g(\Sigma)$ w.r.t. the metric induced from the Fubini-Study metric $\omega_{\text{F.S.}}$ of $\overline{\mathbf{C}}$.

Geometric properties of minimal surfaces can be represented by complex analytic data.

Problem

Given a complete minimal surface, not a plane, what can be said about the size of the set of points on $\overline{\mathbf{C}}$ omitted by its Gauss map?

• $(X(\Sigma), ds^2)$ is complete if $\int_{\gamma} ds$ diverges for every differentiable divergent path γ on Σ .

• $X(\Sigma)$ is a plane \iff The Gauss map g is constant and $K_{ds^2} \equiv 0$.

Theorem (Fujimoto (1988, 1992))

 $X: \Sigma \to \mathbf{R}^3$ a complete conformal minimal immersion $g: \Sigma \to \overline{\mathbf{C}}$ its Gauss map $D_g := \#(\overline{\mathbf{C}} \setminus g(\Sigma))$: the number of omitted values of g ν_g : the total weight of a number of totally ramified values of gThen

 $D_g \leq \nu_g \leq 4.$ (sharp)

Scherk surface

$$\begin{split} \Sigma &= \text{the universal covering of } \overline{\mathbf{C}} \backslash \{\pm 1, \pm i\} \\ \text{W-data } (\omega,g) &= (4dz/(z^4-1),-z). \text{ Thus } D_g = 4. \end{split}$$

Theorem (cf. K. (2013))

 $\Sigma:$ an open Riemann surface with the conformal metric

$$ds^2 := (1 + |g|^2)$$
 m $|\omega|^2$. $(m \in \mathbf{Z}_+)$

If the metric ds^2 is complete and g is nonconstant, then g can omit at most m + 2 distinct values.

Remark

Geometric meaning of "2" in "m+2" is the Euler characteristic of the Riemann sphere \overline{C} .

The least upper bound for
$$D_g$$
: "4" = 2 + $\chi(\overline{\mathbf{C}})$

Theorem (Huber (1957) and Osserman (1964))

 $X\colon \Sigma\to {\bf R}^3\colon$ a complete minimal immersion with finite total curvature Then it satisfies

- Σ is conformally equivalent to $\overline{\Sigma}_{\gamma} \setminus \{p_1, \ldots, p_k\}$, where $\overline{\Sigma}_{\gamma}$ is a closed Riemann surface of genus γ and $p_1, \ldots, p_k \in \overline{\Sigma}_{\gamma}$,
- The W-data (ω, g) can be extended meromorphically to $\overline{\Sigma}_{\gamma}$.

Definition

When the total curvature of a complete minimal surface is finite, the surface is called an algebraic minimal surface.

The Osserman Problem

Theorem (Osserman (1964))

 $X: \Sigma \to \mathbf{R}^3$: an algebraic minimal surface $g: \Sigma \to \overline{\mathbf{C}}$: its Gauss map $D_g := \#(\overline{\mathbf{C}} \setminus g(\Sigma))$: the number of omitted values of gThen

$$D_g \leq 3.$$

Problem (A Survey of Minimal Surfaces, page 90)

Which is the least upper bound for D_g , "2" or "3"?

Example of $D_g = 2$: Catenoid $\Sigma = \mathbf{C} \setminus \{0\}$, $(\omega, g) = (dz/z^2, z)$

Nonexsitence for $D_g = 3$

Theorem (Osserman (1964))

 $X: \Sigma = \overline{\Sigma}_{\gamma} \setminus \{p_1, \dots, p_k\} \to \mathbf{R}^3$: an algebraic minimal surface $g: \Sigma \to \overline{\mathbf{C}}$: its Gauss map with degree dIf $D_g = 3$, then

- $\gamma \ge 1$, and $d \ge k \ge 3$,
- If $\gamma = 1$, then d = k and each end is an embedded end,
- $|\tau(X)| \ge 12\pi$.

Theorem

There exist NO algebraic minimal surface with $D_g = 3$ when

- $|\tau(X)| = 12\pi$ (Weitsman and Xavier (1987)),
- $|\tau(X)| = 16\pi$ (Fang (1993)).

Conjecture A: The least upper bound for D_q is "2"?

Example with $\nu_g = 2.5$ (1)

Conjecture B: The least upper bound for ν_g is "2"?

Conjecture B is not correct.

Example (Miyaoka-Sato (1994) and K. (2006))

 $\Sigma = \mathbf{C} \backslash \{\pm i\}$. The W-data is defined by

$$(\omega,g) = \left(\frac{(z^2+t^2)^2}{(z^2+1)^2} \, dz, \sigma \frac{z^2+1+a(t-1)}{z^2+t}\right), \quad a,t \in \mathbf{R}, \ (a-1)(t-1) \neq 0,$$

where $\sigma^2 = (t+3)/a\{(t-1)a+4\}$. For any satisfying $\sigma^2 < 0$, we obtain an algebraic minimal surface of which Gauss map omits 2 values σ , σa . Moreover, g(0) is a totally ramified value of order 2. Since deg g = 2,

$$\nu_g = 1 + 1 + \left(1 - \frac{1}{2}\right) = 2.5.$$

Example with $\nu_g = 2.5$ (2)

Drawn by Prof. Shoichi Fujimori

Y. Kawakami (Kanazawa University)

19/37

Mototsugu Watanabe (my student) finds a new example with $u_g = 2.5$!

Example (Watanabe (2022))

 $\Sigma = \mathbf{C} ackslash \{0, \pm i\}.$ The W-data is defined by

$$(\omega,g) = \left(\frac{\{(b-a)z^4 + 4(b-1)z^2 + 4(b-1)\}^2}{z^2(z^2+1)^2} dz, \, \sigma \frac{(b-a)z^4 + 4a(b-1)z^2 + 4a(b-1)}{(b-a)z^4 + 4(b-1)z^2 + 4(b-1)}\right),$$

where $a, b \in \mathbf{R} \setminus \{1\}$ s.t. $a \neq b$ and $\sigma^2 = (5a + 11b - 16)/(16ab - 11a - 5b) < 0$. Then we obtain algebraic minimal surfaces of which Gauss map omits 2 values σ , σa . Moreover, $\sigma b = g(\pm \sqrt{2}i)$ is a totally ramified value of order 2. Thus

$$\nu_g = 1 + 1 + \left(1 - \frac{1}{2}\right) = 2.5.$$

Another Example with $\nu_g = 2.5$ (2)

Drawn by Prof. Shoichi Fujimori

Theorem (K-Kobayashi-Miyaoka (2008))

 $X: \Sigma = \overline{\Sigma}_{\gamma} \setminus \{p_1, \dots, p_k\} \to \mathbf{R}^3$: an algebraic minimal surface $g: \Sigma \to \overline{\mathbf{C}}$: its Gauss map with degree d $D_g := \#(\overline{\mathbf{C}} \setminus g(\Sigma))$: the number of omitted values of g ν_g : the total weight of a number of totally ramified values of gThen

$$D_g \le \nu_g \le 2 + \frac{2}{R}, \quad \frac{1}{R} = \frac{\gamma - 1 + (k/2)}{d} < 1.$$

Point: Applying the theory of algebraic curves

- the Riemann-Hurwitz formula (estimate for D_g and ν_g)
- the Riemann-Roch theorem \rightarrow the Chern-Osserman inequality (estimate for 1/R)

Sharpness of KKM-estimate for Some Topological Cases

(1)
$$(\gamma, k, d) = (0, 3, 2) \cdots R^{-1} = (0 - 1 + (3/2))/2 = 1/4$$

 $2 + \frac{2}{R} = 2.5$ (sharp by the Miyaoka-Sato example)

(2)
$$(\gamma, k, d) = (0, 4, 4) \cdots R^{-1} = (0 - 1 + (4/2))/4 = 1/4$$

$$2 + \frac{2}{R} = 2.5$$
 (sharp by the Watanabe example)

We do not know that this estimate is optimal for all topological cases.

$\S3.$ Gauss Map of Complete Minimal Surfaces in \mathbf{R}^4

 $X=(x^1,x^2,x^3,x^4)\colon\Sigma\to{\bf R}^4:$ a conformal minimal immersion Set $\phi_i=\partial x^i\ (i=1,2,3,4)$ If we set

$$\omega = \phi_1 - i\phi_2, \quad g_1 = \frac{\phi_3 + i\phi_4}{\phi_1 - i\phi_2}, \quad g_2 = \frac{-\phi_3 + i\phi_4}{\phi_1 - i\phi_2},$$

then ω is a holomorphic 1-form, g_1 and g_2 are meromorphic functions on $\Sigma.$

In particular, $G = (g_1, g_2) \colon \Sigma \to \overline{\mathbf{C}} \times \overline{\mathbf{C}}$ coincides with the Gauss map of $X(\Sigma)$ in \mathbf{R}^4 .

Furthermore, the induced metric from ${f R}^4$ is represented as

$$ds^{2} = (1 + |g_{1}|^{2})^{\boxed{1}} (1 + |g_{2}|^{2})^{\boxed{1}} |\omega|^{2}.$$

Theorem (Aiyama-Akutagawa-Imagawa-K (2016))

 $\boldsymbol{\Sigma}:$ an open Riemann surface with the conformal metric

$$ds^{2} = \prod_{i=1}^{n} (1 + |g_{i}|^{2})^{m_{i}} |\omega|^{2},$$

where $G = (g_1, \ldots, g_n) \colon \Sigma \to (\overline{\mathbf{C}})^n = \underbrace{\overline{\mathbf{C}} \times \cdots \times \overline{\mathbf{C}}}_{n}$ is a holomorphic map, ω is a holomorphic 1-from on Σ and each $m_i^n (i = 1, \ldots, n)$ is a positive integer.

Assume that g_{i_1}, \ldots, g_{i_k} $(1 \le i_1 < \cdots < i_k \le n)$ are nonconstant and the others are constant. If the metric is complete and each g_{i_l} $(l = 1, \cdots, k)$ omits $q_{i_l} > 2$ distinct values, then we have

$$\sum_{l=1}^{k} \frac{m_{i_l}}{q_{i_l} - 2} \ge 1.$$

Nov. 8, 2022

Corollary (Fujimoto (1988))

 $X: \Sigma \to \mathbf{R}^4$: a complete nonflat minimal immersion $G = (g_1, g_2): \Sigma \to \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map

(1) Assume that g_1 and g_2 are nonconstant and omit q_1 and q_2 values respectively. If $q_1 > 2$ and $q_2 > 2$, then we have

$$\frac{1}{q_1 - 2} + \frac{1}{q_2 - 2} \ge 1.$$

(2) If either g_1 or g_2 , say g_2 is constant, then g_1 can omit at most 3 values.

Note: These results (1) and (2) are optimal.

Theorem (Huber (1957) and Osserman (1964))

 $X\colon \Sigma\to {\bf R}^4\colon$ a complete minimal immersion with finite total curvature Then it satisfies

- Σ is conformally equivalent to $\overline{\Sigma}_{\gamma} \setminus \{p_1, \ldots, p_k\}$, where $\overline{\Sigma}_{\gamma}$ is a closed Riemann surface of genus γ and $p_1, \ldots, p_k \in \overline{\Sigma}_{\gamma}$,
- The W-data (ω, g_1, g_2) can be extended meromorphically to $\overline{\Sigma}_{\gamma}$.

Definition

When the total curvature of a complete minimal surface is finite, the surface is called an algebraic minimal surface.

Theorem (Hoffman-Meeks (1980), K. (2009))

$$\begin{split} X: \Sigma &= \overline{\Sigma}_{\gamma} \setminus \{p_1, \dots, p_k\} \to \mathbf{R}^4: \text{ an algebraic minimal surface} \\ G &= (g_1, g_2): \Sigma \to \overline{\mathbf{C}} \times \overline{\mathbf{C}}: \text{ its Gauss map} \\ d_i: \text{ the degree of } g_i \ (i = 1, 2) \\ \nu_{g_i}: \text{ the total weight of a number of totally ramified values of } g_i \ (i = 1, 2) \\ \textbf{(1) If } g_1 \text{ and } g_2 \text{ are nonconstant, then } \nu_{g_1} \leq 2, \text{ or } \nu_{g_2} \leq 2, \text{ or} \end{split}$$

$$\frac{1}{\nu_{g_1}-2} + \frac{1}{\nu_{g_2}-2} \ge R_1 + R_2 > 1, \quad R_i = \frac{d_i}{2\gamma - 2 + k} \quad (i = 1, 2),$$

(2) If one of g_1 and g_2 is constant, say g_2 is constant, then

$$\nu_{g_1} \le 2 + \frac{1}{R_1} \quad \frac{1}{R_1} = \frac{2\gamma - 2 + k}{d_1} < 1.$$

Example (Watanabe (2022))

 $\boldsymbol{\Sigma} = \mathbf{C} \backslash \{\pm i\}.$ The W-data is defined by

$$(\omega, g_1, g_2) = \left(\frac{(z^2 - 1)^2}{(z^2 + 1)^2} dz, \frac{z^2 + a}{z^2 - 1}, \frac{z^2 + b}{z^2 - 1}\right),$$

where $a, b \in \mathbf{R}$ satisfy (a+1)(b+1) = 8.

Then we obtain algebraic minimal surfaces with $\nu_{g_1} = 2.5$ and $\nu_{g_2} = 2.5$. This surface is optimal for (1) in the previous estimate for $(\gamma, k, d_1, d_2) = (0, 3, 2, 2)$. Indeed,

$$R_1 + R_2 = \frac{2}{0 - 2 + 3} + \frac{2}{0 - 2 + 3} = 4, \quad \frac{1}{\nu_{g_1} - 2} + \frac{1}{\nu_{g_2} - 2} = 4.$$

We also do not know that this estimate is optimal for all topological cases.

Corollary: Rigidity Theorem (1)

Corollary (Hoffman-Meeks (1980))

 $X: \Sigma \to \mathbf{R}^4$: an algebraic minimal surface $G = (g_1, g_2): \Sigma \to \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map

- (1) If both g_1 and g_2 omit more than 3 values, then $X(\Sigma)$ must be a plane,
- (2) If one of g_1 and g_2 is constant, say g_2 is constant and if g_1 omits more than 2 values, then $X(\Sigma)$ must be a plane.

Example (Sharpness for (2) in Corollary)

 $\boldsymbol{\Sigma} = \mathbf{C} \backslash \{0\}.$ The W-data is defined by

$$(\omega,g_1,g_2)=\left(rac{dz}{z^2},\,z,\,c
ight),\quad c: ext{ constant}$$

then we obtain an algebraic minimal surface of which g_1 omits 2 values $0, \infty$.

Proposition (Watanabe (2022))

 $X: \Sigma = \overline{\Sigma}_0 \setminus \{p_1, \ldots, p_k\} \to \mathbf{R}^4$: an algebraic minimal surface of genus 0 $G = (g_1, g_2): \Sigma \to \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map If both g_1 and g_2 are nonconstant, one of the following holds:

(i)
$$\nu_{g_1} \leq 2$$
, (ii) $\nu_{g_2} \leq 2$, (iii) $\frac{1}{\nu_{g_1} - 2} + \frac{1}{\nu_{g_2} - 2} > 2$.

Corollary (Watanabe (2022))

 $X: \Sigma = \overline{\Sigma}_0 \setminus \{p_1, \dots, p_k\} \to \mathbf{R}^4$: an algebraic minimal surface of genus 0 $G = (g_1, g_2): \Sigma \to \overline{\mathbf{C}} \times \overline{\mathbf{C}}$: its Gauss map If both g_1 and g_2 are nonconstant, one of the following holds:

(i)
$$D_{g_1} \le 2$$
, (ii) $D_{g_2} \le 2$.

Example (Watanabe (2022))

 $\Sigma = \mathbf{C} \setminus \{0\}$. The W-data is defined by

$$(\omega, g_1, g_2) = \left(\frac{dz}{z^2}, az, -\bar{a}z\right),$$

where $a \in \mathbb{C} \setminus \{0\}$. Then we obtain algebraic minimal surfaces whose Gauss maps g_1 and g_2 omit 2 values, 0 and ∞ (i.e., $D_{g_1} = D_{g_2} = 2$).

We do not know whether there exists an example with $D_{g_1} = D_{g_2} = 3$ or not.

Problem 1

If the Gauss map of a complete minimal surface in \mathbb{R}^3 has just 4 omitted values, then the Gaussian curvature is strictly negative on everywhere (i.e. the surface has no flat point)?

In other words, a complete minimal surface in ${\bf R}^3$ has at least one flat point, then its Gauss map omits at most 3 values.

Note:

This conjecture is true if a complete minimal surface is pseudo-algebraic (this class contains the Schrek surface) because we have

$$D_g \le 2 + \frac{2}{R} - \frac{l}{d}, \quad \frac{1}{R} = \frac{\gamma - 1 + (k/2)}{d} \le 1.$$

Here l is the number of (not necessarily totally) ramified values other than omitted values of g.

 $\widehat{\Sigma}:$ a nonorientable Riemann surface, that is,

a nonorientable surface endowed with an atlas whose transition maps are holomorphic and antiholomorphic.

 $\pi\colon\Sigma\to\widehat{\Sigma}$: the conformal oriented two sheeted covering of $\widehat{\Sigma}$

Then a conformal map $\widehat{X} : \widehat{\Sigma} \to \mathbf{R}^3$ be a nonorientable minimal immersion if $X = \widehat{X} \circ \pi$ is a conformal minimal immersion.

 $I: \Sigma \to \Sigma$: the antiholomorphic order two deck transformation associated with π If g is the Gauss map of the surface $X = \hat{X} \circ \pi$, then we have

$$g \circ I = -\frac{1}{\bar{g}}.$$

Thus there exists a unique map $\hat{g} \colon \widehat{\Sigma} \to \mathbf{RP}^2 \equiv \overline{\mathbf{C}}/\langle I \rangle$ satisfying

 $\hat{g} \circ \pi = p_0 \circ g,$

where $p_0 \colon \overline{\mathbf{C}} \to \overline{\mathbf{C}} / \langle I \rangle$ is the natural projection.

 \rightarrow We call \hat{g} the generalized Gauss map of $\widehat{X}(\widehat{\Sigma})$.

Theorem (F. J. López and Martín (2000))

The generalized Gauss map of a complete nonorientable minimal surface in \mathbf{R}^3 can omit at most 2 points of \mathbf{RP}^2 .

Note:

- "2" comes from the Fujimoto theorem.
- López and Martín proved that there exist complete nonorientable minimal surface in R³ whose generalized Gauss map omits 2 points in RP².

Problem 2

Are there any complete nonorientable minimal surface with finite total curvature whose generalized Gauss map omits 1 point in \mathbf{RP}^2 ?

Note: From the Osserman theorem, the case of finite total curvature, we know that the generalized Gauss map can omit at most 1 point in \mathbb{RP}^2 .

- New example of algebraic minimal surfaces with $\nu_g = 2.5$ (By Mr. Mototsugu Watanabe)
- A geometric interpretation for D_g and ν_g (Several cases)
- Outstanding Problems (The Osserman problem, Flat point conjecture, Nonorientable case)
- (in progress) A geometric interpretation for the maximum number of omitted hyperplanes of the generalized Gauss map of complete minimal surfaces in Rⁿ (By Ha-K-Watanabe)