Uniformization of compact Sasakian manifolds using basic Higgs bundles

Natsuo Miyatake
Email address 1: natsuo.m.math@gmail.com
Email address 2: n-miyatake@imi.kyushu-u.ac.jp
The 28th Symposium on Complex Geometry (Kanazawa) 2022 Joint work with Hisashi Kasuya (Osaka University)

November 7th, 2022

Harmonic bundles

Let $(E, D) \rightarrow\left(M, g_{M}\right)$ be a flat bundle over a Riemannian manifold and $\rho_{D}: \pi_{1}(M) \rightarrow \mathrm{GL}(r, \mathbb{C})$ the holonomy representation.

Definition (Harmonic metric on a flat bundle)

A Hermitian metric h on (E, D) is said to be a harmonic metric if the natural ρ_{D}-equivariant map $\hat{h}: \tilde{M} \rightarrow \mathrm{GL}(r, \mathbb{C}) / \mathrm{U}(r)$ is a harmonic map.

Definition (Harmonic bundle)

A harmonic bundle over $\left(M, g_{M}\right)$ is a pair $(E, D, h) \rightarrow\left(M, g_{M}\right)$ consisting of a flat bundle (E, D) and a harmonic metric h on (E, D).

Theorem (Donaldson'87, Corlette '88)

A flat bundle over a compact Riemannian manifold admits a harmonic metric if and only if it is semisimple.

Kobayashi-Hitchin correspondence between Higgs bundles and harmonic bundles (Simpson'88)

Let $\left(X, \omega_{X}\right)$ be a Kähler manifold.

Definition (Hitchin '87, Simpson '88, Higgs bundle)

A Higgs bundle over X is a pair (E, θ) consisting of a holomorphic vector bundle $E \rightarrow X$ and a holomorphic section θ of End $E \otimes \bigwedge^{1,0}$ satisfying $\theta \wedge \theta=0$. We call θ the Higgs field.

For a Hermitian metric h, we define a connection D as

$$
D:=\nabla^{h}+\theta+\theta^{* h},
$$

where:

- $\nabla^{h}=\partial_{h}+\bar{\partial}$ is the Chern connection of h,
- $\theta^{* h}: E \rightarrow E \otimes \bigwedge^{0,1}$ is the adjoint of θ for the metric h.

If the connection D is flat, then $(E, D, h) \rightarrow\left(X, \omega_{X}\right)$ is a harmonic bundle.

Definition (Hermitian-Einstein equation)

The following elliptic PDE for a hermitian metric h is called the Hermitian-Einstein equation:

$$
\Lambda_{\omega_{X}} F_{D}^{\perp}=\Lambda_{\omega_{X}}\left(F_{\nabla^{h}}+\left[\theta \wedge \theta^{* h}\right]\right)^{\perp}=0
$$

where we denote by $\Lambda_{\omega_{X}}$ the adjoint of $\omega_{X} \wedge$, and by F_{D}^{\perp} the trace-free part of the curvature. We call the solution of the Hermitian-Einstein equation Hermitian-Einstein metric.

Proposition (Simpson'88)

Suppose that a Kähler manifold $\left(X, \omega_{X}\right)$ is compact for simplicity. Let h be a Hermitian-Einstein metric of a Higgs bundle (E, θ) over $\left(X, \omega_{X}\right)$. If $c_{1}(E)=c_{2}(E)=0$, then the connection $D=\nabla^{h}+\theta+\theta^{* h}$ is flat.

Let $\left(X, \omega_{X}\right)$ be a compact Kähler manifold.

Theorem (Simpson'88)

A Higgs bundle $(E, \theta) \rightarrow\left(X, \omega_{X}\right)$ admits a Hermitian-Einstein metric if and only if (E, θ) is polystable.

Corollary (Kobayashi-Hitchin correspondence of Higgs bundles and harmonic bundles, Simpson'88)
For a Higgs bundle $(E, \theta) \rightarrow\left(X, \omega_{X}\right)$, there exists a Hermitian metric h such that a connection $D:=\nabla^{h}+\theta+\theta^{* h}$ is flat if and only if (E, θ) is polystable and $c_{1}(E)=c_{2}(E)=0$.

Remark

Let $(E, D, h) \rightarrow\left(X, \omega_{X}\right)$ be a harmonic bundle and $D=\partial_{h}+\bar{\partial}_{h}+\theta+\theta^{* h}$ the natural decomposition of D. Then $\bar{\partial}_{h} \circ \bar{\partial}_{h}=0$ and $\left(E, \bar{\partial}_{h}, \theta\right)$ is a Higgs bundle. This follows from Corlette's theorem ('88).

Uniformization

Let G_{0} be a real semisimple Lie group with Lie algebra \mathfrak{g}_{0}. We denote by \mathfrak{g} the complexification of the Lie algebra \mathfrak{g}_{0}. Suppose that \mathfrak{g} decomposes as

$$
\mathfrak{g}=\mathfrak{g}^{0,0} \oplus \mathfrak{g}^{1,-1} \oplus \mathfrak{g}^{-1,1}
$$

and that the decomposition satisfies the following for all $p, r \in\{1,0,-1\}$:

$$
\begin{aligned}
& \overline{\mathfrak{g}^{p,-p}}=\mathfrak{g}^{-p, p} \\
& {\left[\mathfrak{g}^{p,-p}, \mathfrak{g}^{r,-r}\right] \subseteq \mathfrak{g}^{p+r,-p-r},} \\
& (-1)^{p} \operatorname{Tr}(\operatorname{ad}(\cdot) \operatorname{ad}(\cdot)) \text { is positive definite on } \mathfrak{g}^{p,-p} .
\end{aligned}
$$

Suppose also that the closed subgroup $K_{0} \subseteq G_{0}$ whose Lie algebra is $\mathfrak{g}_{0} \cap \mathfrak{g}^{0,0}$ is compact. Then the Lie group G_{0} with the decomposition of the Lie algebra is called the Hodge group of Hermitian type (Simpson'88).

Example

Let G_{0} and \mathfrak{g}_{0} be

$$
\begin{aligned}
& G_{0}=\mathrm{SU}(n, 1):=\left\{g \in \mathrm{GL}(n+1, \mathbb{C}) \mid g J\left({ }^{t} \bar{g}\right)=J, \operatorname{det}(g)=1\right\} \\
& \mathfrak{g}_{0}=\mathfrak{s u}(n, 1):=\left\{u \in \mathrm{M}(n+1, \mathbb{C}) \mid u J+J\left(^{t} \bar{u}\right)=0, \operatorname{Tr}(u)=0\right\}
\end{aligned}
$$

where J is defined as $J:=\operatorname{diag}(1, \ldots, 1,-1)$. The complexified Lie algebra $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$ decomposes as

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{g}^{-1,1} \oplus \mathfrak{g}^{1,-1} \oplus \mathfrak{g}^{0,0}, \text { where } \\
& \mathfrak{g}^{-1,1}=\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
A & 0
\end{array}\right) \right\rvert\, A=\left(a_{1}, \ldots, a_{n}\right) a_{j} \in \mathbb{C}(j=1, \ldots, n)\right\}, \\
& \mathfrak{g}^{1,-1}=\left\{\left.\left(\begin{array}{cc}
0 & A \\
0 & 0
\end{array}\right) \right\rvert\, A={ }^{t}\left(a_{1}, \ldots, a_{n}\right) a_{j} \in \mathbb{C}(j=1, \ldots, n)\right\}, \\
& \mathfrak{g}^{0,0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & -\operatorname{Tr}(A)
\end{array}\right) \right\rvert\, A \in \mathrm{M}(n, n)\right\} .
\end{aligned}
$$

Let G_{0} be a Hodge group of Hermitian type with the maximal compact subgroup $K_{0} \subseteq G_{0}$. Let K be the complexification of K_{0}.

Definition (uniformizing bundle, Simpson'88)

Let $\left(X, \omega_{X}\right)$ be a compact Kähler manifold. A pair $\left(P_{K}, \theta\right)$ consisting of a holomorphic K-bundle P_{K} over X and a $P_{K} \times_{K} \mathfrak{g}^{-1,1}$-valued holomorphic 1-form θ satisfying $[\theta \wedge \theta]=0$ is said to be a uniformizing bundle if θ is an isomorphism between $T^{1,0} X$ and $P_{K} \times_{K} \mathfrak{g}^{-1,1}$.

Definition (uniformizing variations of Hodge structure, Simpson'88)

A uniformizing variations of Hodge structure is a pair $\left(\left(P_{K}, \theta\right), P_{K_{0}} \subseteq P_{K}\right)$ consisting of a uniformizing bundle $\left(P_{K}, \theta\right)$ and a K_{0}-subbundle $P_{K_{0}} \subseteq P_{K}$ of P_{K} such that the connection $\nabla+\theta+(-\sigma)(\theta)$ is flat, where ∇ is the canonical connection of the reduction $P_{K_{0}} \subseteq P_{K}$, and $\sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ is the involution defined as $\sigma(u+\sqrt{-1} v)=u-\sqrt{-1} v$ for $u, v \in \mathfrak{g}_{0}$.

Example (Hitchin'87)

Let X be a compact connected Riemann surface with genus ≥ 2. We choose a square root $K_{X}^{1 / 2}$ of the canonical bundle $K_{X} \rightarrow X$. We define a Higgs bundle $(E, \theta) \rightarrow X$ over X as

$$
\begin{aligned}
& E:=K_{X}^{1 / 2} \oplus K_{X}^{-1 / 2}, \\
& \theta:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

where 1 is considered to be a holomorphic 1-form taking values in K_{X}^{-1}. This Higgs bundle is stable, and the corresponding harmonic bundle defines an $\mathrm{SU}(1,1)$-uniformizing variations of Hodge structure.

Theorem (Simpson'88)

Let X be a compact Kähler manifold and $\widetilde{X} \rightarrow X$ the universal covering space. Then \widetilde{X} is isomorphic to a bounded symmetric domain \mathcal{D} if and only if there exists a uniformizing variations of Hodge structure $\left(\left(P_{K}, \theta\right), P_{K_{0}} \subseteq P_{K}\right)$ over X with some Hodge group of Hermitian type G_{0} such that $G_{0} / K_{0}=\mathcal{D}$.

Proof.

Suppose that there exists a uniformizing variations of Hodge structure $\left(\left(P_{K}, \theta\right), P_{K_{0}} \subseteq P_{K}\right)$ on X. Then from the G_{0}-flat bundle $\nabla+\theta+(-\sigma)(\theta)$ and the reduction $P_{K_{0}} \subseteq P_{G_{0}}$, we have a $\pi_{1}(X)$-equivariant map: $f: \widetilde{X} \rightarrow G_{0} / K_{0}$. Since θ is an isomorphism between $T^{1,0} X$ and $P_{K} \times{ }_{K} \mathfrak{g}^{-1,1}$, the differential of f

$$
d f: T^{1,0} \tilde{X} \rightarrow T^{1,0}\left(G_{0} / K_{0}\right)
$$

is isomorphic at each fiber since it is a pullback of θ by the universal covering map.

Proof.

(continued from the previous page) In particular, f is a local diffeomorphism. We denote by $\omega_{\tilde{X}}$ the Kähler metric on \widetilde{X} obtained by pulling back the Kähler metric on G_{0} / K_{0} by f. Then $\omega_{\tilde{X}}$ is complete since X is compact. Since f is a local isometry from a complete Kähler manifold $\left(\widetilde{X}, \omega_{\tilde{X}}\right), f$ is a covering map. Furthermore, since G_{0} / K_{0} is simply connected, f is a diffeomorphism.
Conversely, suppose that there exists an isomorphism $f: \widetilde{X} \rightarrow \mathcal{D}$. Then since $\pi_{1}(X)$ acts on X holomorphically, we have a representation $\pi_{1}(X) \rightarrow \operatorname{Aut}(\mathcal{D})$, where we denote by $\operatorname{Aut}(\mathcal{D})$ the set of automorphisms of \mathcal{D}. Set $G_{0}=\operatorname{Aut}(\mathcal{D})$. Then we have a uniformizing bundle with the Hodge group G_{0}.

Example (Simpson'88)

Let $\left(X, \omega_{X}\right)$ be an n-dimensional compact Kähler manifold. We define a holomorphic vector bundle E as

$$
E:=T^{1,0} X \oplus \mathbb{C}
$$

where \mathbb{C} is the trivial bundle. We also define a Higgs field θ on E as

$$
\theta:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

where 1 is considered to be the identity of $T^{1,0} X \otimes \bigwedge^{1,0} \simeq \operatorname{End}\left(T^{1,0} X\right)$.

Example

(continued from the previous page) Suppose that (E, θ) is stable and that

$$
\int_{X}\left\{2 c_{2}\left(T^{1,0} X\right)-c_{1}\left(T^{1,0} X\right)^{2}\right\} \wedge \omega_{X}^{n-2}=0
$$

Then the Hermitian-Einstein metric on (E, θ) gives a $P U(n, 1)$-uniformizing variations of Hodge structure and the universal covering \widetilde{X} is isomorphic to the unit ball in \mathbb{C}^{n}.

Basic Higgs bundles on Sasakian manifolds

Let M be a $2 n+1$-dimensional real manifold.

Definition (Sasakian structure, Sasakian manifold)

A Sasakian structure on M is a pair $\left(T^{1,0},(\xi, \eta)\right)$ consisting of:

- An involutive n-dimensional subbundle $T^{1,0} \subseteq T M \otimes_{\mathbb{R}} \mathbb{C}$ of the complexified tangent bundle satisfying $T^{1,0} \cap T^{0,1}=0$, where $T^{0,1}$ is defined as $T^{0,1}:=\overline{T^{1,0}}$.
- A nowhere vanishing real vector field ξ such that $\left[\xi, T^{1,0}\right] \subseteq T^{1,0}$ and that $S \oplus \mathbb{R} \xi=T M$, where $S \subseteq T M$ is a real subbundle defined as $S:=T M \cap\left(T^{1,0} \oplus T^{0,1}\right)$.
- A real one form η such that $\eta(\xi)=1$, $\operatorname{ker} \eta=S$ and that $d \eta: T^{1,0} \times T^{0,1} \rightarrow \mathbb{C}$ is a positive-definite Hermitian form.
A $2 n+1$-dimensional real manifold equipped with a Sasakian structure is called a Sasakian manifold.

Example

Let \mathcal{D} be an n-dimensional bounded symmetric domain. Then $S^{1}\left(\bigwedge^{n} T^{1,0} \mathcal{D}\right)$ has a Sasakian structure described as follows: Let G_{0} be a Hodge group of Hermitian type such that $G_{0} / K_{0}=\mathcal{D}$. Let $\mathfrak{s} \subseteq \mathfrak{g}_{0}$ be a subspace defined as $\mathfrak{s}:=\mathfrak{g}_{0} \cap\left(\mathfrak{g}^{-1,1} \oplus \mathfrak{g}^{1,-1}\right)$. We denote by $I: \mathfrak{s} \rightarrow \mathfrak{s}$ the complex structure on \mathfrak{s} defined as $I(v+\bar{v}):=\sqrt{-1} v-\sqrt{-1} \bar{v}$ for $v \in \mathfrak{g}^{-1,1}$. Then there exists an element v_{I} of the center $Z\left(\mathfrak{k}_{0}\right)$ such that $I=\operatorname{ad}\left(v_{I}\right)$.

Example

(continued from the previous page) We define a K_{0}-invariant metric on \mathfrak{s}. By considering the action of K_{0} on $\bigwedge^{n} \mathfrak{g}^{-1,1}$, we have a character $\chi: K_{0} \rightarrow \mathrm{U}(1)$. Denote by K_{0}^{\prime} the closed subgroup ker χ of G_{0}, and by $\mathfrak{k}_{0}^{\prime}$ its Lie algebra. Let $\mathfrak{m} \subseteq \mathfrak{g}_{0}$ be the $2 n+1$-dimensional subspace $\mathbb{R} v_{I} \oplus \mathfrak{s}$. Then \mathfrak{m} is naturally isomorphic to $\mathfrak{g}_{0} / \mathfrak{k}_{0}^{\prime}$. We take a linear map $\eta: \mathfrak{m} \rightarrow \mathbb{R}$ so that $\eta\left(v_{I}\right)=1$, $\operatorname{ker} \eta=\mathfrak{s}$. Then $\left(\mathfrak{g}^{-1,1},\left(v_{I}, \eta\right)\right)$ defines a Sasakian structure on $G_{0} / K_{0}^{\prime} \simeq S^{1}\left(\bigwedge^{n} T^{1,0}\left(G_{0} / K_{0}\right)\right)=S^{1}\left(\bigwedge^{n} T^{1,0} \mathcal{D}\right)$.

Let M be a Sasakian manifold with the Reeb vector field ξ.

Definition (basic form)

A differential form ϕ on M is said to be a basic form if $i_{\xi} \phi=i_{\xi} d \phi=0$.

We denote by $\Omega_{B}^{p, q}(M)$ the space of (p, q)-basic forms.

Definition (basic vector bundle)

A vector bundle $E \rightarrow M$ over a Sasakian manifold M equipped with a family $\left(U_{\alpha}, s_{\alpha}:\left.U_{\alpha} \rightarrow E\right|_{U_{\alpha}}\right)_{\alpha \in A}$ of local trivializations is said to be a basic vector bundle if $\bigcup_{\alpha \in A} U_{\alpha}=M$ and all transition functions are basic.

Definition (basic holomorphic bundle)

A basic vector bundle E is called a basic holomorphic bundle if we can take each transition function to be transversely holomorphic.

A basic holomorphic bundle E naturally admits an operator $\bar{\partial}_{E}: \Omega_{B}^{p, q}(E) \rightarrow \Omega_{B}^{p, q+1}(E)$.

Definition (basic Higgs bundle, Biswas-Kasuya'19)

A basic Higgs bundle over M is a pair $(E, \theta) \rightarrow M$ consisting of a basic holomorphic bundle E and a section θ of $\operatorname{End} E \otimes \bigwedge^{1,0}$ such that:

- $\bar{\partial}_{\mathrm{End} E} \theta=0$,
- $\theta \wedge \theta=0$.

Theorem (Biswas-Kasuya'19)

A basic Higgs bundle $(E, \theta) \rightarrow M$ over a compact Sasakian manifold admits a basic Hermitian metric such that $\nabla^{h}+\theta+\theta^{* h}$ is flat if and only if (E, θ) is polystable and $c_{1, B}(E)=c_{2, B}(E)=0$.

Here, we denote by ∇^{h} the basic Chern connection of h.

Main Theorem

Let $\left(M, T^{1,0},(\xi, \eta)\right)$ be a $2 n+1$-dimensional compact Sasakian manifold. Fix a Hodge group G_{0} of Hermitian type. Let K be the complexification of the real Lie group K_{0}.

Definition (basic unformizing bundle)

A basic uniformizing bundle is a pair
($P_{K}, \theta: T^{1,0} M \rightarrow P_{K} \times{ }_{K} \mathfrak{g}^{-1,1}$) consisting of a basic holomorphic principal K-bundle P_{K} and a basic holomorphic isomorphism $\theta: T^{1,0} M \rightarrow P_{K} \times_{K} \mathfrak{g}^{-1,1}$.

Definition (basic uniformizing variations of Hodge structure)

A basic uniformizing variations of Hodge structure is a pair $\left(\left(P_{K}, \theta\right), P_{K_{0}} \subseteq P_{K}\right)$ consisting of a basic uniformizing bundle $\left(P_{K}, \theta\right)$ and a basic K_{0}-reduction $P_{K_{0}} \subseteq P_{K}$ such that the G_{0}-connection $D:=\nabla+\theta+(-\sigma)(\theta)$ is flat, where ∇ is the canonical connection of the reduction $P_{K_{0}} \subseteq P_{K}$, and $\sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ is an involution defined as $\sigma(u+\sqrt{-1} v)=u-\sqrt{-1} v$ for $u, v \in \mathfrak{g}_{0}$.

Let $\left(M, T^{1,0},(\xi, \eta)\right)$ be a compact Sasakian manifold. We denote by $\widetilde{M} \rightarrow M$ the universal covering, and by $\widetilde{\xi}$ the pull-back of ξ by the covering map. Then the following holds:

Theorem (Kasuya-M.)

The following are equivalent for a bounded symmetric domain \mathcal{D} :
(i) There exists a covering map $f: \widetilde{M} \rightarrow S^{1}\left(\bigwedge^{n} T^{1,0} \mathcal{D}\right)$ such that $d f(\widetilde{\xi})=2 \pi C \xi_{\mathcal{D}}$ and that $d f\left(T^{1,0} \widetilde{M}\right) \subseteq \mathbb{C} \xi_{\mathcal{D}} \oplus T^{1,0}\left(S^{1}\left(\bigwedge^{n} T^{1,0} \mathcal{D}\right)\right)$ for some positive constant C, where $\xi_{\mathcal{D}}$ denotes the Reeb vector field of $S^{1}\left(\bigwedge^{n} T^{1,0} \mathcal{D}\right)$.
(ii) For some Hodge group G_{0} such that $G_{0} / K_{0}=\mathcal{D}$, there exists a uniformizing variations of Hodge structure ($P_{K}, \theta, P_{K_{0}} \subseteq P_{K}$) such that the following holds for some positive constant C :

$$
c_{1, B}(L)=-C[d \eta]
$$

where L is a basic complex line bundle defined as $L:=P_{K_{0}} \times_{\chi} \mathbb{C}$.

Remark

If the above (i) and (ii) hold, then $L \simeq \bigwedge^{n} T^{1,0}$.

Remark

The complex line bundle L is defined not only for a uniformizing VHS but also for arbitrary G_{0}-harmonic bundle $\left(P_{G_{0}}, D_{G_{0}}, P_{K_{0}} \subseteq P_{G_{0}}\right)$, where $D_{G_{0}}$ is a flat connection on $P_{G_{0}}$. Let $\Phi: \bar{M} \rightarrow \mathcal{D}$ be the corresponding harmonic map. Then we have $\Phi^{*} \bigwedge^{n} T^{1,0} \mathcal{D}=\pi^{*} L$, where $\pi: \widetilde{M} \rightarrow M$ is the projection.

Remark

Obviously, L is trivial if and only if $P_{K_{0}}$ admits a K_{0}^{\prime}-reduction $P_{K_{0}^{\prime}} \subseteq P_{K_{0}}$.

Proof.

Suppose that (i) holds. We regard M as a Sasakian manifold with a Sasakian stucture induced by the map f. Since $\pi_{1}(M)$ acts on \widetilde{M} preserving the transverse complex structure, we have a representation $\pi_{1}(M) \rightarrow \operatorname{Aut}(\mathcal{D})$, and a $G_{0}:=\operatorname{Aut}(\mathcal{D})$-basic uniformizing variations of Hodge structure. Let $\Phi: M \rightarrow \mathcal{D}$ be the corresponding harmonic map. As remarked above, $\Phi^{*} \bigwedge^{n} T^{1,0} \mathcal{D}=\pi^{*} L$ and thus $c_{1, B}(L)=-C[d \eta]$.

Proof.

Suppose that (ii) holds. Let $\Phi: \widetilde{M} \rightarrow \mathcal{D}$ be the harmonic map associated with the uniformizing variations of Hodge structure. Since $\bigwedge^{n} d \Phi: \bigwedge^{n} T^{1,0} \widetilde{M} \rightarrow \bigwedge^{n} T^{1,0} \mathcal{D}$ is isomorphic at each fiber, we see $L=\bigwedge^{n} T^{1,0}$. From the assumption $c_{1, B}(L)=-C[d \eta]$, we see $c_{1, B}\left(T^{1,0}\right)=-C[d \eta]$ and thus M is quasi-regular. Since $L=\bigwedge^{n} T^{1,0}$, the S^{1}-action lifts to L. From the theory of S^{1}-equivariant cohomology and the assumption $c_{1, B}(L)=-C[d \eta]$, we can take a global trivialization $s: M \rightarrow L$ such that $s(t \cdot x)=t \cdot s(x) e^{2 \pi \sqrt{-1} C t}$ for all $x \in M$ and $t \in \mathbb{R}$, where the left \mathbb{R}-action is defined by the Reeb vector field, and the right multiplication of $e^{2 \pi \sqrt{-1} C t}$ is the fiverwise multiplication. This gives a lift $f: \widetilde{M} \rightarrow G_{0} / K_{0}^{\prime}=S^{1}\left(\bigwedge^{n} T^{1,0} D\right)$ of Φ such that $d f(\widetilde{\xi})=2 \pi C \xi_{\mathcal{D}}$. Then by the same argument as the Kähler manifold case, we see that f is a covering map.

Example

Let $\left(M, T^{1,0},(\xi, \eta)\right)$ be a $2 n+1$-dimensional compact Sasakian manifold. We define a basic holomorphic vector bundle E as

$$
E:=T^{1,0} X \oplus \mathbb{C}
$$

where \mathbb{C} is the trivial bundle. We also define a basic Higgs field θ on E as

$$
\theta:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
$$

where 1 is considered to be the identity of $T^{1,0} \otimes\left(T^{1,0}\right)^{*} \simeq \operatorname{End}\left(T^{1,0}\right)$.

Example

(continued from the previous page) Suppose that (E, θ) is stable and that

$$
\int_{M}\left\{2 c_{2, B}\left(T^{1,0} X\right)-c_{1, B}\left(T^{1,0} X\right)^{2}\right\} \wedge(d \eta)^{n} \wedge \eta=0
$$

Then the Hermitian-Einstein metric on (E, θ) gives a $P U(n, 1)$-basic uniformizing variations of Hodge structure.
Suppose also that $c_{1, B}\left(T^{1,0}\right)=-C[d \eta]$ for some positive C. Then there exists a covering
$f: \widetilde{M} \rightarrow S^{1}\left(\bigwedge^{n} T^{1,0} \mathcal{D}\right) \simeq P U(n, 1) / S U(n)$ such that $d f(\widetilde{\xi})=2 \pi \xi_{\mathcal{D}}$ and that $d f\left(T^{1,0} \widetilde{M}\right) \subseteq \mathbb{C} \xi_{\mathcal{D}} \oplus T^{1,0}\left(S^{1}\left(\bigwedge T^{1,0} \mathcal{D}\right)\right)$, where we denote by \mathcal{D} the unit ball in \mathbb{C}^{n}.

