Analytic Ax-Schanuel Theorem for semi-abelian varieties and Nevanlinna theory

J. Noguchi

Complex Geometry, Kanazawa, Nov. 2022

Folklore of Math.: e and π are alg. indep.

 $\mathrm{e}^{\pi\mathrm{i}}+1=0$: Transcendental relation.

Do you mind this or not?

1. Ax-Schanuel

Schanuel Conj. (Lang's monog. 1966). Let $\alpha_1, \ldots, \alpha_n \in \mathbf{C}$ be linearly indep. over \mathbf{Q} . Then

$$\operatorname{tr.deg}_{\mathbf{Q}}\{\alpha_1,\ldots,\alpha_{\mathsf{n}},\mathsf{e}^{\alpha_1},\ldots,\mathsf{e}^{\alpha_{\mathsf{n}}}\}\geq\mathsf{n}.$$

- (i) n = 1: Gel'fond-Schneider (1934; Hilbert's 7th Problem).
- (ii) n > 1: Open. Even in n = 2: With $(\alpha_1, \alpha_2) = (1, \pi i)$ it implies the Folklore: alg. indep, of e and π .
- (iii) e, e^{π} are alg. indep. (Nesterenko, 1996). The elliptic modular function $j(\tau)$ was used.

Formal Functional Analogue: J. Ax (1971, '72) proved the analogue:

Thm. 1.1 (Ax-Schanuel). Let $f(t)=(f_j(t))\in (\mathbf{C}[[t]])^n$. If $f_j(t)-f_j(0),\ 1\leq j\leq n$, are linearly independent over \mathbf{Q} , then

$$\operatorname{tr.deg}_{\mathbf{C}}\{f_1(t),\dots,f_n(t),e^{f_1(t)},\dots,e^{f_n(t)}\} \geq n+1.$$

More generally, he proved it for semi-ableian varieties, and dealt with t of several variables.

Ax's proof: By means of Kolchin's theory of differential algebra.

(西岡久美子著「微分体の理論」共立.)

Our Aim : 1) Prove Ax-Schanule for entire $f_j(z)$ and a semi-abelian variety A by means of Nevanlina theory,

2) Study and prove a 2nd Main Theorem for the "extended exponential map"

$$\widehat{\exp}_A f: z \in \mathbf{C} \to (\exp_A f(z), f(z)) \in A \times \mathrm{Lie}(A).$$

N.B. There is no "value" in formal analytic functions, but there is for analytic functions: an advantage in the sense that we can think of more problems.

We mainly follow the developments of the theory for entire curves into A since Bloch-Ochiai's Theorem and S. Lang's monog. '66.

Arithmetic Thry.-O-minimal Thry.-Nevnalinna Thry.:

(i) Raynaud's Theorem (1983, Manin-Munford Conj.):

 $X \subset A$ subvariety (/K). $\Rightarrow X_{tor} = \bigcup_{finite} (a + B_{tor})$, where $a \in X_{tor}$ and alg. subgrp's. B.

Proof: By method of char. p > 0.

- (ii) Another Proof by O-minimal due to Pila-Zannier (2008).
- (iii) Yet Another Proof by Nevanliina thry. (Log Bloch-Ochiai)+O-minimal (N., Atti Accad. Naz. Rend. Lincei Mat. Appl. 29 (2018)).
- (iv) Another Proof of <u>Ax-Schanuel by "O-minimal"</u> (Tsimerman 2015, Peterzil-Starchenko 2018).
- (v) Yet Another Proof of <u>Analy. Ax-Schanuel by Nevanlinna thry.</u>: Today 1. More on the Value Distribution: Today 2.

····· without "O-minimal".

(vi) **Expectation**: Analy. Ax-Schanuel + O-minimal + Arithmetic \implies ??

Application of Ax-Shanuel:(e.g.) W.D. Brownawell and K.K. Kubota, The algebraic independence of Weierstrass functions and some related numbers, Acta Arith. **33** (1977), 111–149.

This is covered by the present result.

2. Results

Jet Spaces. Let A be a semi-abelian variey of dim n:

$$0 \to (\mathbf{C}^*)^t \to A \to A_0 \to 0$$
 (with A_0 abelian var.),

 $\exp_{A} : Lie(A) \to A$ be an exponential map;

 $f: \mathbf{C} \to \mathrm{Lie}(A) \cong \mathbf{C}^n$ be an entire curve.

Set

$$\widehat{\exp}_A f: z \in \mathbf{C} \to (\exp_A f(z), f(z)) \in A \times \mathrm{Lie}(A).$$

Take its k-jet lift:

$$J_k(\widehat{\exp}_A f): z \in \mathbf{C} \to (J_k(\exp_A f(z)), J_k(f(z))) \in J_k(A \times \mathrm{Lie}(A)) \cong J_k(A) \times J_k(\mathrm{Lie}(A)).$$

Speciality:

$$\begin{split} J_k(A) &\cong A \times J_{k,A}, & J_k(\operatorname{Lie}(A)) \cong \operatorname{Lie}(A) \times J_{k,\operatorname{Lie}(A)} \\ J_k(A \times \operatorname{Lie}(A)) &= A \times J_{k,A} \times \operatorname{Lie}(A) \times J_{k,\operatorname{Lie}(A)}, & J_{k,A} &= J_{k,\operatorname{Lie}(A)}, \\ J_k(\widehat{\exp}_A f)(z) &= (\exp_A f(z), J_{k,\exp_A f}(z), f(z), J_{k,f}(z)), & J_{k,\exp_A f}(z) &= J_{k,f}(z) \ (k \geq 1). \end{split}$$

We consider:

$$(2.1) \hspace{1cm} \mathsf{J}_{k}(\widehat{\exp}_{A}f)(z) \in \mathsf{A} \times \mathrm{Lie}(\mathsf{A}) \times \mathsf{J}_{k,\mathsf{A}} \hookrightarrow \mathsf{J}_{k}(\mathsf{A} \times \mathrm{Lie}(\mathsf{A})).$$

 $\widehat{J}_{k,A} = \mathrm{Lie}(A) \times J_{k,A} \cong \mathbf{C}^n \times \mathbf{C}^{nk} \mathrm{\ is\ called\ the\ } \mathbf{extended\ jet\ part}.$

 $X_k(\widehat{\exp}_A f) = \overline{J_k(\widehat{\exp}_A f)(\mathbf{C})}^{\mathrm{Zar}} \ \mathrm{is \ the \ Zariski \ closure \ of \ the \ image:}$

$$\operatorname{tr.deg}_{\mathbf{C}} \, \widehat{\exp}_A f := \dim_{\mathbf{C}} X_0(\widehat{\exp}_A f).$$

Def. 2.2. $f : \mathbf{C} \to \operatorname{Lie}(A)$ is $\underline{A\text{-degnerate}}$ if \exists alg. subgroup $G \subsetneq A$ s.t. $\exp_A f(\mathbf{C}) \subset \exp_A f(0) + G$ (coset type).

 $\mathbf{N.B.} \ A = (\mathbf{C}^*)^t : \ f = (f_j) \ \mathrm{is} \ (\mathbf{C}^*)^n \mathrm{-degenerate} \Longleftrightarrow f_j, 1 \leq j \leq n, \ \mathrm{are \ lin. \ dep.}/\mathbf{Q}.$

Thm. 2.1 (Analy. Ax-Schanuel). If an entire curve $f: C \to \operatorname{Lie}(A)$ is A-nondeg., then $\operatorname{tr.deg}_C \widehat{\exp}_A f \geq n+1$.

Order Functions.

 $f=(f_1,\ldots,f_n):z\in\mathbf{C}\to f(z)\in\mathbf{C}^n\cong\mathrm{Lie}(A),\ \mathrm{an\ entire\ curve}.$

Nevanlinna-Shimizu-Ahlfors order function:

$$T(r,f_j) = T_{f_j}(r,\omega_{\rm FS}) = \int_1^r \frac{dt}{t} \int_{\Delta(t)} f^* \omega_{\rm FS}.$$

Roughly, $\underline{\mathsf{T}(\mathsf{r},\mathsf{f}_{\mathsf{j}})} \sim \log \max_{|\mathsf{z}|=\mathsf{r}} |\mathsf{f}_{\mathsf{j}}(\mathsf{z})|$.

$$T_f(r) := \max\nolimits_{1 \le j \le n} T(r, f_j).$$

 $T_{\exp_A f}(r) = T_{\exp_A f}(r, \omega_L) \text{ with the curvature form } \omega_L \text{ of a big l.b. } L \to \bar{A}.$

 $T_{\widehat{\exp}_{\Delta}f}(r):=T_{\exp_{\Delta}f}(r)+T_f(r) \text{ for } \widehat{\exp}_{A}f:\mathbf{C}\to A\times \mathrm{Lie}(A).$

 $S_{\exp_A f}(r) = O\left(\log^+ T_{\exp_A f}(r)\right) + O(\log r) + O(1)|| = o(T_{\exp_A f}(r))|| \text{ (with except'l intervals of total finite length)}.$

Lem. 2.3 (Key). (i) $T_f(r) = S_{\exp_A f}(r)$.

$$(\mathrm{ii}) \ T_{\widehat{\exp}_{\Delta} f}(r) = T_{\exp_{\Delta} f}(r) + S_{\exp_{\Delta} f}(r).$$

Proof. Use the complex Poisson integral + Borel's technic.

Proof of Analytic Ax-Schanuel Thm.2.1.

The A-nondegeneracy and the Log Bloch–Ochiai imply $\overline{\exp_A f(\mathbf{C})}^{Zar} = A$:

$$(2.4) tr. \deg_{\mathbf{C}} \exp_{\mathbf{A}} f = \mathbf{n}.$$

Lem. 2.5. tr. $\deg_{\mathbf{C}(f)} \mathbf{C}(f, \exp_{\mathbf{A}}(f)^*\mathbf{C}(\mathbf{A})) \geq 1$.

Pf. If "= 0", $(\exp_A f)^* \mathbf{C}(A)$ is alg. over (f_j) , so that $T_{\exp_A f}(r) = O(T_f(r)) = o(T_{\exp_A f}(r))$ by Key Lem. 2.3; Contradiction!

 $\begin{array}{l} (2.4) \Rightarrow \mathrm{tr.\,deg}_{\mathbf{C}} \widehat{\exp}_{A} f \geq \mathsf{n.\,\,Suppose\,\,tr.\,deg}_{\mathbf{C}} \widehat{\exp}_{A} f = \mathsf{n.} \Rightarrow \underline{\mathsf{f}_{j}\,\,\mathrm{are\,\,alg.\,\,/(exp_{A}\,f)^{*}C(A)}}. \\ \Longrightarrow \exists \,\,\mathrm{non\text{-}trivial\,\,alg.\,\,relations} \end{array}$

(2.6)
$$P_{j}(f_{j}, \hat{\phi}) = P_{j}(f_{j}, \hat{\phi}_{1}, \dots, \hat{\phi}_{n}) = 0, \quad 1 \leq j \leq n,$$

where $\{\phi_j\}_{j=1}^n$ is a transcendental basis of $\mathbf{C}(\mathsf{A})$, and $\hat{\phi}_j := \phi_j \circ \exp_{\mathsf{A}} \mathsf{f}$.

Lem. 2.5 \Rightarrow tr. $\deg_{\mathbf{C}}\{f_j\}_{j=1}^n < n$: That is, \exists a non-trivial alg. relation

$$Q(f_1, \dots, f_n) = 0.$$

Eliminate f_j $(1 \le j \le n)$ in (2.6) and (2.7). \Rightarrow f is A-degnerate: Contradiction! \Box Example. (Brownawell-Kubota) A product of elliptic curves, $A := \prod^n E_j$ and $\underline{alg. indep.}$ $f = (f_j) : \mathbf{C} \to \mathrm{Lie}(A)$:

$$\operatorname{tr.deg}_{\mathbf{C}}\{f_1,\ldots,f_n,\wp_1(f_1),\ldots,\wp_m(f_n)\} \geq n+1.$$

Here one may claim the same for more generally $\underline{A\text{-nondegenerate}}\ f=(f_j)$: e.g., with $f_1(z)=z, f_2(z)=z$ and $\underline{non\text{-isogenious}}\ E_j\ (j=1,2),$

$$\operatorname{tr.deg}_{\mathbf{C}}\{\mathsf{z},\wp_1(\mathsf{z}),\wp_2(\mathsf{z})\} = 3.$$

$$\overline{\operatorname{Lie}(\mathsf{E}_1) \times \operatorname{Lie}(\mathsf{E}_2)} \times \mathsf{A} = \mathbf{P}^2(\mathbf{C}) \times \mathsf{E}_1 \times \mathsf{E}_2,$$

$$\mathsf{T}_{\widehat{\exp}_{\mathsf{A}}\mathsf{f}}(\mathsf{r}) = \frac{\pi\mathsf{r}^2}{2} \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \mathsf{o}(1) \right),$$

wherer λ_j are the areas of the fundamental parallelograms of \wp_j (j=1,2). Let $P(z_1, z_2, w_1, w_2)$ be a polynomials of degrees d_1, d_2 in w_1, w_2 respectively, and $\Xi_P = \{P(z, z, \wp_1(z), \wp_2(z)) = 0\}$. Then

$$\mathsf{N}_{\infty}(\mathsf{r},\Xi_\mathsf{P}) = \mathsf{N}_1(\mathsf{r},\Xi_\mathsf{P}) + \mathsf{o}(\mathsf{r}^2) = \pi \mathsf{r}^2 \left(\frac{\mathsf{d}_1}{\lambda_1} + \frac{\mathsf{d}_2}{\lambda_2} + \mathsf{o}(1) \right).$$

3. Nevanlinna thry. for $\widehat{\exp}_A f$

Thm. 3.1 (2nd Main Thm.). Let $f: \mathbb{C} \to Lie(A)$ be A-nondegenerate.

(i) For a reduced alg. subset $Z \subset X_k(\widehat{\exp}_A f)$ ($\subset A \times \widehat{J}_{k,A}$) ($k \geq 0$), $\exists \, \bar{A} \times \overline{\widehat{J}}_{k,A}$, a proj. compactification with closures $\bar{X}_k(\widehat{\exp}_A f)$ and \bar{Z} ksuch that

(3.1)
$$\mathsf{T}_{\mathsf{J}_{\mathsf{k}}(\widehat{\exp}_{\mathsf{A}}\mathsf{f})}(\mathsf{r},\omega_{\bar{\mathsf{Z}}}) = \mathsf{N}_{\mathsf{1}}(\mathsf{r},\mathsf{J}_{\mathsf{k}}(\widehat{\exp}_{\mathsf{A}}\mathsf{f})^{*}\mathsf{Z}) + \mathsf{S}_{\varepsilon,\exp_{\mathsf{A}}\mathsf{f}}(\mathsf{r}),$$

where $S_{\varepsilon,\exp_A f}(r) \leq \varepsilon T_{\exp_A f}(r) + O(\log r) \mid \mid_{\varepsilon} (\forall \varepsilon > 0)$, and $\omega_{\bar{z}}$ is a sort of curvature form associated with \bar{Z} .

(ii) If $\operatorname{codim}_{X_k(\widehat{\exp}_\Delta f)} Z \geqq 2$, then

(3.2)
$$\mathsf{T}_{\widehat{\exp}_{\Delta}\mathsf{f}}(\mathsf{r},\omega_{\bar{\mathsf{Z}}}) = \mathsf{S}_{\varepsilon,\exp_{\Delta}\mathsf{f}}(\mathsf{r}).$$

(iii) (k = 0) If D is a reduced divisor on A \times Lie(A) and $D \not\supset X_0(\widehat{\exp}_A f)$, then

(3.3)
$$\mathsf{T}_{\widehat{\exp}_{\mathsf{A}}\mathsf{f}}(\mathsf{r},\omega_{\bar{\mathsf{D}}}) = \mathsf{N}_{\mathsf{1}}(\mathsf{r},(\widehat{\exp}_{\mathsf{A}}\mathsf{f})^*\mathsf{D}) + \mathsf{S}_{\varepsilon,\widehat{\exp}_{\mathsf{A}}\mathsf{f}}(\mathsf{r}).$$

where $\overline{D} \subset \overline{A} \times \overline{\mathrm{Lie}(A)}$.

Pf. $\exists \ell \in \mathbf{N}$ such that

$$\mathsf{T}_{\mathsf{J}_{\mathsf{k}}(\widehat{\exp}_{\mathsf{A}}f)}(\mathsf{r},\omega_{\bar{\mathsf{Z}}}) = \mathsf{N}_{\ell}(\mathsf{r},\mathsf{J}_{\mathsf{k}}(\widehat{\exp}_{\mathsf{A}}f)^*\mathsf{Z}) + \mathsf{S}_{\exp_{\mathsf{A}}f}(\mathsf{r})$$

Here, using this and codim $Z \ge 2$, we prove (ii).

Using (ii), we deduce

$$N_\ell(r,J_k(\widehat{\exp}_Af)^*Z)-N_1(r,J_k(\widehat{\exp}_Af)^*Z)=S_{\epsilon,\exp_Af}(r),$$

$$\implies$$
 (i).

As an aplication we have:

Thm. 3.2. Let $\widehat{\exp}_A f : \mathbb{C} \to A \times \operatorname{Lie}(A)$ and $\overline{\mathbb{D}} \subset \overline{A} \times \overline{\operatorname{Lie}(A)}$ be as in (iii) above.

Assume that some positive multiple $\nu\bar{D}$ contains a big divisor coming from \bar{A} .

Then \exists irred. comp. $E \subset D \cap X_0(\widehat{\exp}_A f)$ such that $\widehat{\exp}_A f(\mathbf{C}) \cap E$ is Zariski dense in E; in particular, $|\widehat{\exp}_A f(\mathbf{C}) \cap D| = \infty$.

N.B. For $\exp_A f : \mathbf{C} \to \mathsf{A}$, by Corvaja-N. ('12), answering a problem in Lang's monog. '66.

The proof of the 2nd Main Thm. 3.1 is rather long but we carry out the proof along the way as for $\exp_A f: C \to A$ (N.-Winkelmann-Yamanoi) by making use of Key Lem 2.3.

The next theorem says that the distribution $\widehat{\exp}_A f^*D$ on C contains an ample information of \widehat{A} , D and f; we have the following <u>unicity theorem of H. Cartan-P. Erdös-K. Yamanoi type</u> (cf. Yamanoi Forum Math. 2004, Corvaja-N. Math. Ann. 2012)

Thm. 3.3 (Unicity). Let A_j (j=1,2) be two semi-abelian varieties and let D_j (j=1,2) be effective reduced A_j -big divisors on \widehat{A}_j with

$$\widehat{\mathrm{St}}(D_j):=\{x\in \widehat{A}_j: x+D_j=D_j\}=\{0\}.$$

Let $f_j:\mathbf{C}\to \mathrm{Lie}(A_j)$ be $\underline{A_{j}\text{-nondegenerate}}.$ Assume that

$$\operatorname{Supp}\,(\widehat{\exp}_{A_1}f_1)^*D_1=\operatorname{Supp}\,(\widehat{\exp}_{A_2}f_2)^*D_2.$$

Then $\exists \alpha : A_1 \xrightarrow{\cong} A_2$ with $\hat{\alpha} : \widehat{A}_1 \to \widehat{A}_2$, such that

- $\hat{\alpha}^* D_2 = D_1$,
- $\widehat{\exp}_{A_2} f_2 = \hat{\alpha} \circ \widehat{\exp}_{A_1} f_1$, up to translations of \widehat{A}_j .

Remarks to some extensions:

- (i) $C \Rightarrow \Delta(r)^*$ (isolated essential singularity, Big Picard type).
- (ii) $C \Rightarrow$ affine alg. curve.
- (iii) $\mathbf{C} \Rightarrow (\text{parabolic})$ Riemann suface with involving a counting function of Euler numbers.
- (iv) Hyperbolic case? Hyperbolic Bloch–Ochiai by "O-minimal", Pila, Ulmo, Mok (2018 at Kanazawa), . . .

Thank you for your attention!!

Nov. 2022 at Kanazawa