How to Find Subvarieties Obstracting Kobayashi Hyperbolicity - An Elementary Method and its Variation -

Ryoichi Kobayashi

Nagoya University

1-4 November 2021 Complex Geometry Simposium

Sequence of Kodaira Embeddings and Grassmannians

- Let X be an n-dimensional projective manifold and $L \to X$ an ample line bundle. For $\forall m \in \mathbb{Z}$ sufficiently large mL is very ample.
- The Kodaira map $\Phi_m: X \to |mL|^*$ is defined by

 $\Phi_m(x) = \{ [s] \in |mL| \, | \, s(x) = 0 \} \in |mL|^* .$

For $\forall \mu \in \mathbb{G}(n, |mL|)$, the projection $\Phi_m^{\mu} : X \to \mu^* \cong \mathbb{P}^n$ is canonically defined. A $\mu \in \mathbb{G}(n, |mL|)$ determines the "linear center" $Z^{N_m - n - 1} \subset \mathbb{P}^{N_m} = |mL|^*$ and the projection is realized as a projection from $Z^{N_m - n - 1}$ to any $\mathbb{P}^n \subset \mathbb{P}^{N_m}$ disjoint from $Z^{N_m - n - 1}$.

• Thus we have the sequence of Kodaira maps $\{\Phi_m : X \to |mL|^*\}_m$ and Grassmannians $\{\mathbb{G}(n, |mL|)\}_m$. For each m, we have the collection of projections $\{\{\Phi_m^\mu : X \to \mu^* \cong \mathbb{P}^n\}_{\mu \in \mathbb{G}(n, |mL|)}\}_m$.

• Question : What happens if we compare theories on \mathbb{P}^n with those on X via the sequence $\{\{\Phi_m^\mu: X \to \mu^* \cong \mathbb{P}^n\}_{\mu \in \mathbb{G}(n, |mL|)}\}_m$?

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

1-st Variation : Peak Section

• Set Up : Let (L, h) be an ample line bundle with a positive Hermitian metric, i.e., $c_1(L, h)$ is a Kähler form on X.

• Working on \mathbb{P}^n : We define a sequence of the Kodaira maps $\Phi_m: X \to |mL|$ where $H^0(X, mL)$ is equipped with the Fubini-Study metric determined by the L^2 -inner product on $H^0(X, mL)$. We pick $x \in X$ and take an element s_x^{μ} of $\mathcal{O}_{\mathbb{P}^n}(1)$ with L^2 -norm 1 which takes its peak at the image $\Phi_m^{\mu}(x) \in \mathbb{P}^n$. We can do this in the following way. Choose a unitary affine coordinate system centered at $\Phi_m^{\mu}(x)$. Then we have a polar set $P \cong \mathbb{P}^{n-1}$ of the point $\Phi_m^{\mu}(x)$. Then we take an element $s \in \mathcal{O}_{\mathbb{P}^n}(1)$ s.t. (s) = P. Then $|s|_{\mathrm{FS}}$ has its peak at $\Phi_m^{\mu}(x)$ and therefore $s = s_x^{\mu}$.

1-st Variation : Peak Section (continued)

• Comparison with X : For the purpose of comparison, we vary $\mu\in\mathbb{G}(n,|mL|)$ and sum up $(\Phi^\mu_m)^*s_{x,\mu}$ to define

$$\sigma_x := \int_{\mu \in \mathbb{G}(n,|mL|)} (\Phi_m^{\mu})^* s_{x,\mu} dV_{\text{Haar}} .$$

Here we have to multiply appropriate $e^{i\theta}$ before integration in order to avoid cancellation. We thus have a section $\sigma_x \in H^0(X, mL)$ which has a peak at a given point $x \in X$.

• Thus the comparison method explains the Tian-Zelditch Peak Section Theorem.

1-st Variation : Peak Section (continued)

- Peak Section on \mathbb{P}^n : In the case of $\mathcal{O}_{\mathbb{P}^n}(m)$ (*m* large), we can explicitly construct a peak section by expressing a given point of \mathbb{P}^n as an intersection of various $(S^1)^n$ orbit obtained by varying the embedding of $(S^1)^n$ into the maximal compact subgroup $\mathrm{SU}(n+1) \subset \mathrm{SL}(n+1)$ determined by the Fubini-Study structure.
- Concentration : The large m in $\mathcal{O}_{\mathbb{P}^n}(m)$ corresponds to the large m in |mL| so that the projection $\Phi_m^{\mu}: X \to \mathbb{P}^n$ has high degree L^m and therefore an element of $\mathcal{O}_{\mathbb{P}^n}(1)$ is pulled-back via Φ_m^{μ} to a section of mL and therefore the concentration at x becomes stronger.

2-nd Variation : Shiffman-Zelditch Approximation

Theorem (Shiffman-Zelditch Approximation Theorem)

Let $(L, e^{-\varphi})$ be a positive line bundle s.t. $\omega = dd^c\varphi$ is a Kähler form. Let $[s_m] \in |mL|$ be a Haar distributed random section. Then the integration current $\frac{1}{m}(s_m)$ almost surely converges to the Kähler form ω as $m \to \infty$.

• We consider the following situation : Let $R_{\mu} \subset X$ be the ramification divisor of the projection $\mu: X \to \mathbb{P}^n$. Then the Riemann-Hurwitz Formula implies

$$[R_{\mu}] = \mu^* K_{\mathbb{P}^n}^{-1} - K_X^{-1}$$

and the line bundle $F_m = [R_\mu]$ is independent of $\mu \in \mathbb{G}(n, |mL|)$.

• Let $(F_m, e^{-\varphi_m})$ be a sequence of positive line bundles s.t. $\omega_m := \frac{1}{(\deg F_m)^{1/n}} dd^c \varphi_m$ converges to a Kähler form ω_∞ .

・ 何 ト ・ ヨ ト ・ ヨ ト

2-nd Variation : Shiffman-Zelditch Approximation (continued)

In the set up of the previous page, we have the following variant of the Shiffman-Zelditch Approximation Theorem (which is based on the Tian/Zelditch Peak Section Theorem).

Observation (M. Izumi)

The ramification divisor R_{μ} for Haar distributed random projection $\mu \in \mathbb{G}(n, |mL|)$ almost surely converges to the uniform distribution determined by the Kähler form ω_{∞} as $m \to \infty$.

The bottom arrow lifts to $\operatorname{Aut}(\mathbb{G}(n, |mL|)) \to \operatorname{Aut}(\mathbb{P}(H^0(X, \mathcal{O}_X(R_{\mu})))).$

3-rd Variation : Geometric Quantization

• Let X be a projective manifold and $(L, e^{-\varphi})$ a positive line bundle on X, i.e., $\omega := dd^c \varphi$ is a Kähler form representing $c_1(L)$. The concept of the real polarization was proposed to identify the Hilbert space $H^0(X, mL)$ (m being large) in the manner independent of the complex structure which makes ω Kähler. The 3-rd variation is concerned with this concept.

• The space $H^0(X, \mathcal{O}(mL))$ has L^2 -inner product. Its group of symmetry is the unitary group. The Hermitian structure of $H^0(X, \mathcal{O}(mL))$ canonically induces the Fubini-Study structure on |mL| which becomes homogeneous w.r.to the action of the unitary group. The Kodaira map embeds X into the Fubini-Study space $|mL|^* = \mathbb{P}^{N_m}$. A choice of a unitary basis determines the moment polytope. The unitary basis consists of elements of $\mathcal{O}_{\mathbb{P}^{N_m}}(1)$ and a vertex of the moment polytope corresponds to the points where the Fubini-Study norm of the corresponding basis element takes its maximum. The vertices consists of $(N_m + 1)$ points in $|mL|^* = \mathbb{P}^{N_m}$.

• A choice μ of (n + 1) points from $(N_m + 1)$ vertices determines a \mathbb{P}^n in \mathbb{P}^{N_m} . This is a discrete analogue of the Grassmannian $\mathbb{G}(n, |mL|)$. Interpreting this \mathbb{P}^n as an element of $\mathbb{G}(n, |mL|)$, we consider the projection $\mu : X \to \mathbb{P}^n$. As soon as we consider μ , we get (n + 1) clusters of points each consisting of $\deg(\mu)$ points on X. Each cluster of points on X obtained this way corresponds to one of $(N_m + 1)$ vertices of the large moment polytope. Therefore, considering all such μ 's, we get $(N_m + 1)$ clusters of $\deg(\mu)$ points on X.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

• The effect of large m: Suppose that m is very large. Then each of the special (n + 1) points of \mathbb{P}^n corresponds to the maximum norm point of the corresponding unitary basis element of $\mathcal{O}_{\mathbb{P}^{N_m}}(1)$. Therefore, the pull-back via $\mu: X \to \mathbb{P}^n$ (note that $\deg(\mu)$ is large) is a section (say, $\sigma_{\mu,1}$) of mL which has peak along the $\deg(\mu)$ points in the corresponding cluster.

• Question 1. The magnitude of the cluster indefinitely becomes large. Can we trace the evolution of *m*-dependent "particular cluster" as $m \to \infty$? If so, does the particular cluster *GH* converges to a Lagrangian subspace of the Kähler manifold (X, ω) ?

• Question 2. Suppose that Question 1 is affirmative. Then we ask : Is the sequence of holomorphic sections (say, $\{\sigma_{\mu,1}\}_m$) asymptotically covariant constant (after scaling) along the Lagrangian subspace ?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

• Working on \mathbb{P}^n : Pick an m_0 s.t. m_0L is very ample and consider the sequence of m consisting of numbers divisible by m_0 . In this setting we consider the previously defined collection of \mathbb{P}^n 's in $\mathbb{P}^{N_{m_0}}$. We consider the image of X and any one of \mathbb{P}^n (considered in the above procedure for $m = m_0$) in the same ambient space $|mL|^* = \mathbb{P}_{\mathbb{N}_m}$. Then, on the image of \mathbb{P}^n (taken originally from $|m_0L|^*$) in $|mL|^*$ (so the image has large degree in $|mL|^*$), there arises clusters via any chosen \mathbb{P}^n 's spanned by (n + 1) points among $(N_m + 1)$ vertices in \mathbb{P}^{N_m} .

• Comparison between X and \mathbb{P}^n : We compare the clusters on \mathbb{P}^n and those in X. The cluster in \mathbb{P}^n approximates an $(S^1)^n$ -orbit (a fiber of a moment map) and therefore asymptotically Lagrangian in GH sense. The metrized Kodaira maps are asymptotically isometric by the Tian/Zelditch Theorem. This implies that the sequence of clusters in X is also asymptotically Lagrangian. Taking various m_0 and restricting to the sequence of m divisible by m_0 , we can trace the evolution of a particular m-dependent cluster and we get a sequence of sections of mL which is (after scaling) asymptotically covariant constant along the limit Lagrangian subspace.

• Although a Lagrangian fibration asymptotically appears on X, we can NOT say that, for a particular m (even very large), there exists a basis of $H^0(X, mL)$ each of which localizes covariant constantly along a limit Lagrangian subspace.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

4-th Variation : Obstruction to Hyperbolicity

The 4-th variation is concerned with the attempt of characterizing a subvariety obstructing Kobayashi hyperbolicity

Theorem (Brody's criterion)

A compact complex manifold is not hyperbolic if and only if there exists a "complex line" $f : \mathbb{C} \to X$.

Therefore to find subvarieties obstructing Kobayashi hyperbolicity, we study a holomorphic curve $f: \mathbb{C} \to X$.

• Set Up : Let (X, D) be a pair of an *n*-dimensional projective manifold and a very ample s.n.c. divisor D. We set L = [D]. Let

$$f: \mathbb{C} \to X$$

be a holomorphic curve. Instead of the complete linear system |mL|, we consider a linear subsystem |mL|' consisting of those whose divisor contains D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

13/22

1. Pick any *n*-dimensional linear subsystem $\mu \subset |mL|'$ and define $\Phi_m^\mu: X \to \mu^*$. Then, the map $\Phi_m^\mu: X \to \mu^*$ is realized as a projection $\mu: X \to \mathbb{P}^n$ (from the center $Z^{N_m - n - 1}$ determined by |mL|). We define $f_m^\mu := \Phi_m^\mu \circ f : \mathbb{C} \to \mathbb{P}^n.$

2. Let R_{μ} be the ramification divisor associated to $\Phi_m^{\mu}: X \to \mathbb{P}^n$. For a fixed m, the line bundle $[R_{\mu}]$ does not depend on μ and we denoted it by F_m . Then $\mathbb{G}' := \mathbb{G}(n, |mL|') \ni \mu \mapsto R_\mu \in |F_m|$ becomes a Haar distributed random variable.

3. As f_m^{μ} is \mathbb{P}^n -valued, we can use the affine coordinate system of \mathbb{P}^n to define the Wronskian $W(j_n(f_m^{\mu}))$ as a $K_{\mathbb{P}^n}^{-1}$ -valued holomorphic map. Here $j_n(f_m^{\mu})$ denotes the *n*-th jet of f_m^{μ} in terms of the affine coordinates of \mathbb{P}^n (we imagine the parallelepiped generated by $f', \ldots, f^{(n)}$, where $f = (f_1, \ldots, f_n)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

4. Let ψ_μ ∈ H⁰(X, F_m) be the defining section of R_μ, i.e. R_μ = (ψ_μ).
5.

$$\Psi_{\mu}(j_n f) := \frac{W(j_n(f_m^{\mu}))}{\psi_{\mu}(f)} : \mathbb{C} \to \mu^* K_{\mathbb{P}^n}^{-1} \otimes F_m^{-1} = K_X^{-1}$$

is a K_X^{-1} -valued meromorphic map. Here we have used the Riemann-Hurwitz Theorem $\mu^* K_{\mathbb{P}^n}^{-1} = K_X^{-1} + R_{\mu}$.

6. From mD back to D: We consider D + D' (s.n.c.) where $D' \in |(m-1)D|$ and take the mean over |(m-1)D| of the theory, e.g., we take $\mathfrak{M}_{D'\in|(m-1)D|}m_{f,D+D'}(r)$.

くほう イヨン イヨン 二日

• Question : Does the K_X^{-1} -valued meromorphic map $\frac{W(j_n(f_m^{\mu}))}{\psi_{\mu}(f)}$ play the same role as the Wronskian of a holomorphic curve in \mathbb{P}^n (this is $K_{\mathbb{P}^n}^{-1}$ -valued holomorphic map) ?

• Answer (*) : Yes, it does, modulo error term of magnitude $\varepsilon T_{f,E}(r)$. Here, $E \to X$ is any fixed ample line bundle on X and $\varepsilon > 0$ is any given positive number.

(Reason) Ahlfors-Yamanoi LLD + Measure Concentration.

Typical measure concentration phenomenon : Let k be fixed and d very large. Then, randomly chosen k vectors in \mathbb{R}^d are almost surely orthogonal.

- 4 回 ト 4 三 ト - 三 - シック

16 / 22

Digression on Nevanlinna Theory

X: a projective manifold.

 $D = (\sigma)$: a s.n.c. divisor. $\{h = e^{-\varphi}\}$: a Hermitian metric of [D]. $f : \mathbb{C} \to X$ is a non-constant holomorphic curve s.t. $f(0) \notin D$.

(proximity function) $m_{f,D}(r) = \int_0^{2\pi} \log \frac{1}{|\sigma(f(e^{i\theta}))|_h} \frac{d\theta}{2\pi}$.

(counting function) $N_{f,D}(r) = \int_0^r \frac{dt}{t} n_{f,D}(t),$ $n_{f,D}(t) = \sharp \{ z \in \mathbb{D}(t) \mid \sigma(f(z)) = 0 \}.$

(order function) $T_{f,c_1([D])}(r) = \int_0^r \frac{dt}{t} \int_{\mathbb{D}(t)} dd^c \varphi$. homomorphism modulo O(1).

(linear case : $X = \mathbb{P}^n$) $N_{f,\text{Ram}}(r) = N_{W(f),S_0}(r)$. Note : W(f) is $K_{\mathbb{P}^n}^{-1}$ -valued holomorphic.

(Poincaré-Lelong + Stokes \Rightarrow) (First Main Theorem) $T_{f,c_1([D])}(r) = N_{f,D}(r) + m_{f,D}(r) - m_{f,D}(0)$.

• Comparison : The Cartan/Ahlfors Theory applied to $f_m^{\mu} : \mathbb{C} \to \mathbb{P}^n$: (CA) $m_{f_m^{\mu},\mu(F)}(r) + N_{W(f_m^{\mu}),S_0}(r) \le T_{f_m^{\mu},K_{\mathbb{P}^n}^{-1}}(r) + S_f(r) \ (F \in |mD|).$

Plugging Rieman-Hurwitz $\mu^* K_{\mathbb{P}^n}^{-1} = K_X^{-1} + R_\mu$ to (CA), we get (X) $m_{f,D}(r) + \int_{\mu \in \mathbb{G}'} d\mu \{ N_{W(f_m^\mu),S_0}(r) - T_{f,R_\mu}(r) \} \leq T_{f,K_X^{-1}}(r) + S_f(r).$ Here $S_f(r) = O(\log T_f(r) + \log r).$

• Measure Concentration : Let $E \to X$ be any fixed ample line bundle. We have the ${\bf key\ inequality}$:

 $\begin{array}{l} (*) \quad \int_{\mu \in \mathbb{G}'} d\mu \{ N_{\Psi_{\mu}(j_n f), S_0}(r) \} \leq \int_{\mu \in \mathbb{G}'} d\mu \{ N_{W(f_m^{\mu}), S_0}(r) - T_{f, R_{\mu}}(r) \} + \\ \varepsilon \, T_{f, E}(r), \text{ where } \varepsilon \, T_{f, E}(r) \text{ is the admissible eror term.} \end{array}$

We plug this inequality to $(X) \Rightarrow \text{If } K_X$ is big, the obstruction for hyperbolicity arises from the situation where the procedure defining $\int_{\mu \in \mathbb{G}'} d\mu \{ N_{W(f_m^{\mu}),S_0}(r) - T_{f,R_{\mu}}(r) \}$ does **NOT** make sense.

• Obstruction to the above argument defining the random variable $\{N_{W(f_m^{\mu}),S_0}(r) - T_{f,R_{\mu}}(r)\}_{\mu \in \mathbb{G}'}$ or equivalently $\{\Psi_{\mu}(j_n f)\}_{\mu \in \mathbb{G}'}$ does **NOT** make sense is classified.

(a) For $\forall \mu \in \mathbb{G}'$ the image $f_m^{\mu}(\mathbb{C}) \subset$ a proper linear subspace in \mathbb{P}^n . We cannot use Cartan/Ahlfors theory.

(b) the image $f(\mathbb{C}) \subset Bs\{R_{\mu}\}_{\mu \in \mathbb{G}'}$, i.e., the situation characterized by the condition $f(\mathbb{C}) \subset \bigcap_{\mu \in \mathbb{G}'} R_{\mu}$. The locus $\bigcap_{\mu \in \mathbb{G}'} R_{\mu}$ is characterized by the property that the pull-back of affine coordinates don't constitute a coordinate system on X.

• In the proof of the key inequality (*) [P. Lin and K], we need almost surely existence of local holomorphic coordinate system obtained by the pull-back of affine functions on \mathbb{P}^n . If $f(\mathbb{C}) \subset \bigcap_{\mu \in \mathbb{G}'} R_{\mu}$, it is absolutely impossible.

Note : In both possibilities (a) and (b) we have to take sufficiently large m in order to apply the measure concentration phenomenon.

- It turns out that the possibility (a) never occurs, if D is a s.n.c. divisor.
- The possibility (b) does happen. For instance, the generalized diagonal.

• To prove the key inequality (*) we have to make m large (so that the measure concentration takes place) and fixed. So, the special set should be the union of $\bigcap_{\mu \in \mathbb{G}'} R_{\mu}$ over those m. This union is a proper algebraic subset. We fix a large number M (so that measure concentration takes place) and define the special set

$$Z_{X,D,\varepsilon,E} := \bigcup_{m \le M} \bigcap_{\mu \in \mathbb{G}'} R_{\mu} ,$$

where $\varepsilon > 0$ and E means that we admit an error of magnitude $\varepsilon T_{f,E}(r)$ in the key inequality (*).

イロト 不得下 イヨト イヨト 二日

• (Example) Linear case : Imagine 4 lines in general position in \mathbb{P}^2 . A line passing through 2 intersection points among 6 is a generalized diagonal. $X = \mathbb{P}^n$, D : linear divisor in general position. Then Bs $\{R_\mu\}_{\mu \in \mathbb{G}}$ consists of the generalized diagonal. \therefore Let S be a k-codimensional linear subspace of \mathbb{P}^n s.t. $S \cap D$ has component-wise multiplicity k+1, i.e., S is a generalized diagonal. The restriction to an ε -displacement S_{ε} of S of a holomorphic section of [mD] vanishing along D is locally expressed as $(x + a_1 \varepsilon y_1) \dots (x + a_k \varepsilon y_k)(x + a_{k+1} \varepsilon y_{k+1})$. We differentiate this quantity along S_{ε} in a direction transversal to S_{ε} . We can choose such a direction so that $(x + a_1 \varepsilon y_1) \dots (x + a_{k+1} \varepsilon y_{k+1}) - x^k = O(\varepsilon^2)$. If we choose this direction, the differentiation of this quantity w.r.to ε is of magnitude $O(\varepsilon)$. Therefore S belongs to any R_{μ} .

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Thank you very much for your attention !

æ

22 / 22

э.

< □ > < 同 >