How to Find Subvarieties Obstracting Kobayashi Hyperbolicity

- An Elementary Method and its Variation -

Ryoichi Kobayashi

Nagoya University

1-4 November 2021 Complex Geometry Simposium

Sequence of Kodaira Embeddings and Grassmannians

- Let X be an n-dimensional projective manifold and $L \rightarrow X$ an ample line bundle. For $\forall m \in \mathbb{Z}$ sufficiently large $m L$ is very ample.
- The Kodaira map $\Phi_{m}: X \rightarrow|m L|^{*}$ is defined by

$$
\Phi_{m}(x)=\{[s] \in|m L| \mid s(x)=0\} \in|m L|^{*} .
$$

For $\forall \mu \in \mathbb{G}(n,|m L|)$, the projection $\Phi_{m}^{\mu}: X \rightarrow \mu^{*} \cong \mathbb{P}^{n}$ is canonically defined. A $\mu \in \mathbb{G}(n,|m L|)$ determines the "linear center" $Z^{N_{m}-n-1} \subset \mathbb{P}^{N_{m}}=|m L|^{*}$ and the projection is realized as a projection from $Z^{N_{m}-n-1}$ to any $\mathbb{P}^{n} \subset \mathbb{P}^{N_{m}}$ disjoint from $Z^{N_{m}-n-1}$.

- Thus we have the sequence of Kodaira maps $\left\{\Phi_{m}: X \rightarrow|m L|^{*}\right\}_{m}$ and Grassmannians $\{\mathbb{G}(n,|m L|)\}_{m}$. For each m, we have the collection of projections $\left\{\left\{\Phi_{m}^{\mu}: X \rightarrow \mu^{*} \cong \mathbb{P}^{n}\right\}_{\mu \in \mathbb{G}(n,|m L|)}\right\}_{m}$.
- Question: What happens if we compare theories on \mathbb{P}^{n} with those on X via the sequence $\left\{\left\{\Phi_{m}^{\mu}: X \rightarrow \mu^{*} \cong \mathbb{P}^{n}\right\}_{\mu \in \mathbb{G}(n,|m L|)}\right\}_{m}$?

1-st Variation : Peak Section

- Set Up : Let (L, h) be an ample line bundle with a positive Hermitian metric, i.e., $c_{1}(L, h)$ is a Kähler form on X.
- Working on \mathbb{P}^{n} : We define a sequence of the Kodaira maps $\Phi_{m}: X \rightarrow|m L|$ where $H^{0}(X, m L)$ is equipped with the Fubini-Study metric determined by the L^{2}-inner product on $H^{0}(X, m L)$. We pick $x \in X$ and take an element s_{x}^{μ} of $\mathcal{O}_{\mathbb{P}^{n}}(1)$ with L^{2}-norm 1 which takes its peak at the image $\Phi_{m}^{\mu}(x) \in \mathbb{P}^{n}$. We can do this in the following way. Choose a unitary affine coordinate system centered at $\Phi_{m}^{\mu}(x)$. Then we have a polar set $P \cong \mathbb{P}^{n-1}$ of the point $\Phi_{m}^{\mu}(x)$. Then we take an element $s \in \mathcal{O}_{\mathbb{P}^{n}}(1)$ s.t. $(s)=P$. Then $|s|_{\mathrm{FS}}$ has its peak at $\Phi_{m}^{\mu}(x)$ and therefore $s=s_{x}^{\mu}$.

1-st Variation : Peak Section (continued)

- Comparison with X : For the purpose of comparison, we vary $\mu \in \mathbb{G}(n,|m L|)$ and $\operatorname{sum} u p\left(\Phi_{m}^{\mu}\right)^{*} s_{x, \mu}$ to define

$$
\sigma_{x}:=\int_{\mu \in \mathbb{G}(n,|m L|)}\left(\Phi_{m}^{\mu}\right)^{*} s_{x, \mu} d V_{\text {Haar }}
$$

Here we have to multiply appropriate $e^{i \theta}$ before integration in order to avoid cancellation. We thus have a section $\sigma_{x} \in H^{0}(X, m L)$ which has a peak at a given point $x \in X$.

- Thus the comparison method explains the Tian-Zelditch Peak Section Theorem.

1-st Variation : Peak Section (continued)

- Peak Section on \mathbb{P}^{n} : In the case of $\mathcal{O}_{\mathbb{P}^{n}}(m)$ (m large), we can explicitly construct a peak section by expressing a given point of \mathbb{P}^{n} as an intersection of various $\left(S^{1}\right)^{n}$ orbit obtained by varying the embedding of $\left(S^{1}\right)^{n}$ into the maximal compact subgroup $\mathrm{SU}(n+1) \subset \mathrm{SL}(n+1)$ determined by the Fubini-Study structure.
- Concentration: The large m in $\mathcal{O}_{\mathbb{P}^{n}}(m)$ corresponds to the large m in $|m L|$ so that the projection $\Phi_{m}^{\mu}: X \rightarrow \mathbb{P}^{n}$ has high degree L^{m} and therefore an element of $\mathcal{O}_{\mathbb{P}^{n}}(1)$ is pulled-back via Φ_{m}^{μ} to a section of $m L$ and therefore the concentration at x becomes stronger.

2-nd Variation : Shiffman-Zelditch Approximation

Theorem (Shiffman-Zelditch Approximation Theorem)
 Let $\left(L, e^{-\varphi}\right)$ be a positive line bundle s.t. $\omega=d d^{c} \varphi$ is a Kähler form. Let $\left[s_{m}\right] \in|m L|$ be a Haar distributed random section. Then the integration current $\frac{1}{m}\left(s_{m}\right)$ almost surely converges to the Kähler form ω as $m \rightarrow \infty$.

- We consider the following situation: Let $R_{\mu} \subset X$ be the ramification divisor of the projection $\mu: X \rightarrow \mathbb{P}^{n}$. Then the Riemann-Hurwitz Formula implies

$$
\left[R_{\mu}\right]=\mu^{*} K_{\mathbb{P}^{n}}^{-1}-K_{X}^{-1}
$$

and the line bundle $F_{m}=\left[R_{\mu}\right]$ is independent of $\mu \in \mathbb{G}(n,|m L|)$.

- Let $\left(F_{m}, e^{-\varphi_{m}}\right)$ be a sequence of positive line bundles s.t.
$\omega_{m}:=\frac{1}{\left(\operatorname{deg} F_{m}\right)^{1 / n}} d d^{c} \varphi_{m}$ converges to a Kähler form ω_{∞}.

2-nd Variation : Shiffman-Zelditch Approximation (continued)

In the set up of the previous page, we have the following variant of the Shiffman-Zelditch Approximation Theorem (which is based on the Tian/Zelditch Peak Section Theorem).

Observation (M. Izumi)

The ramification divisor R_{μ} for Haar distributed random projection $\mu \in \mathbb{G}(n,|m L|)$ almost surely converges to the uniform distribution determined by the Kähler form ω_{∞} as $m \rightarrow \infty$.

$$
\begin{aligned}
& \mathbb{G}(n,|m D|) \xrightarrow{\text { Plücker embedding }} \mathbb{P}\left(\bigwedge^{n+1} H^{0}\left(X, \mathcal{O}_{X}(m D)\right)\right) \\
& \quad=\downarrow \\
& \mathbb{G}(n,|m D|) \xrightarrow{\text { ramification divisor }}
\end{aligned}
$$

The bottom arrow lifts to $\operatorname{Aut}(\mathbb{G}(n,|m L|)) \rightarrow \operatorname{Aut}\left(\mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}\left(R_{\mu}\right)\right)\right)\right.$.

3-rd Variation : Geometric Quantization

- Let X be a projective manifold and $\left(L, e^{-\varphi}\right)$ a positive line bundle on X, i.e., $\omega:=d d^{c} \varphi$ is a Kähler form representing $c_{1}(L)$. The concept of the real polarization was proposed to identify the Hilbert space $H^{0}(X, m L)$ (m being large) in the manner independent of the complex structure which makes ω Kähler. The 3-rd variation is concerned with this concept.
- The space $H^{0}(X, \mathcal{O}(m L))$ has L^{2}-inner product. Its group of symmetry is the unitary group. The Hermitian structure of $H^{0}(X, \mathcal{O}(m L))$ canonically induces the Fubini-Study structure on $|m L|$ which becomes homogeneous w.r.to the action of the unitary group. The Kodaira map embeds X into the Fubini-Study space $|m L|^{*}=\mathbb{P}^{N_{m}}$. A choice of a unitary basis determines the moment polytope. The unitary basis consists of elements of $\mathcal{O}_{\mathbb{P}^{N_{m}}}(1)$ and a vertex of the moment polytope corresponds to the points where the Fubini-Study norm of the corresponding basis element takes its maximum. The vertices consists of $\left(N_{m}+1\right)$ points in $|m L|^{*}=\mathbb{P}^{N_{m}}$.

3-rd Variation : Geometric Quantization (continued)

- A choice μ of $(n+1)$ points from $\left(N_{m}+1\right)$ vertices determines a \mathbb{P}^{n} in $\mathbb{P}^{N_{m}}$. This is a discrete analogue of the Grassmannian $\mathbb{G}(n,|m L|)$. Interpreting this \mathbb{P}^{n} as an element of $\mathbb{G}(n,|m L|)$, we consider the projection $\mu: X \rightarrow \mathbb{P}^{n}$. As soon as we consider μ, we get $(n+1)$ clusters of points each consisting of $\operatorname{deg}(\mu)$ points on X. Each cluster of points on X obtained this way corresponds to one of $\left(N_{m}+1\right)$ vertices of the large moment polytope. Therefore, considering all such μ 's, we get $\left(N_{m}+1\right)$ clusters of $\operatorname{deg}(\mu)$ points on X.

3-rd Variation : Geometric Quantization (continued)

- The effect of large m : Suppose that m is very large. Then each of the special $(n+1)$ points of \mathbb{P}^{n} corresponds to the maximum norm point of the corresponding unitary basis element of $\mathcal{O}_{\mathbb{P}^{N_{m}}}(1)$. Therefore, the pull-back via $\mu: X \rightarrow \mathbb{P}^{n}$ (note that $\operatorname{deg}(\mu)$ is large) is a section (say, $\sigma_{\mu, 1}$) of $m L$ which has peak along the $\operatorname{deg}(\mu)$ points in the corresponding cluster.
- Question 1. The magnitude of the cluster indefinitely becomes large.

Can we trace the evolution of m-dependent "particular cluster" as $m \rightarrow \infty$? If so, does the particular cluster $G H$ converges to a Lagrangian subspace of the Kähler manifold (X, ω) ?

- Question 2. Suppose that Question 1 is affirmative. Then we ask: Is the sequence of holomorphic sections (say, $\left\{\sigma_{\mu, 1}\right\}_{m}$) asymptotically covariant constant (after scaling) along the Lagrangian subspace ?

3-rd Variation : Geometric Quantization (continued)

- Working on \mathbb{P}^{n} : Pick an m_{0} s.t. $m_{0} L$ is very ample and consider the sequence of m consisting of numbers divisible by m_{0}. In this setting we consider the previously defined collection of \mathbb{P}^{n} 's in $\mathbb{P}^{N_{m_{0}}}$. We consider the image of X and any one of \mathbb{P}^{n} (considered in the above procedure for $\left.m=m_{0}\right)$ in the same ambient space $|m L|^{*}=\mathbb{P}_{\mathbb{N}_{m}}$. Then, on the image of \mathbb{P}^{n} (taken originally from $\left|m_{0} L\right|^{*}$) in $|m L|^{*}$ (so the image has large degree in $|m L|^{*}$), there arises clusters via any chosen \mathbb{P}^{n} 's spanned by $(n+1)$ points among $\left(N_{m}+1\right)$ vertices in $\mathbb{P}^{N_{m}}$.

3-rd Variation : Geometric Quantization (continued)

- Comparison between X and \mathbb{P}^{n} : We compare the clusters on \mathbb{P}^{n} and those in X. The cluster in \mathbb{P}^{n} approximates an $\left(S^{1}\right)^{n}$-orbit (a fiber of a moment map) and therefore asymptotically Lagrangian in $G H$ sense. The metrized Kodaira maps are asymptotically isometric by the Tian/Zelditch Theorem. This implies that the sequence of clusters in X is also asymptotically Lagrangian. Taking various m_{0} and restricting to the sequence of m divisible by m_{0}, we can trace the evolution of a particular m-dependent cluster and we get a sequence of sections of $m L$ which is (after scaling) asymptotically covariant constant along the limit Lagrangian subspace.
- Although a Lagrangian fibration asymptoticaly appears on X, we can NOT say that, for a particular m (even very large), there exists a basis of $H^{0}(X, m L)$ each of which localizes covariant constantly along a limit Lagrangian subspace.

4-th Variation : Obstruction to Hyperbolicity

The 4-th variation is concerned with the attempt of characterizing a subvariety obstructing Kobayashi hyperbolicity

Theorem (Brody's criterion)
A compact complex manifold is not hyperbolic if and only if there exists a "complex line" $f: \mathbb{C} \rightarrow X$.

Therefore to find subvarieties obstructing Kobayashi hyperbolicity, we study a holomorphic curve $f: \mathbb{C} \rightarrow X$.

- Set Up : Let (X, D) be a pair of an n-dimensional projective manifold and a very ample s.n.c. divisor D. We set $L=[D]$. Let

$$
f: \mathbb{C} \rightarrow X
$$

be a holomorphic curve. Instead of the complete linear system $|m L|$, we consider a linear subsystem $|m L|^{\prime}$ consisting of those whose divisor contains D.

4-th Variation : Obstruction to Hyperbolicity (continued)

1. Pick any n-dimensional linear subsystem $\mu \subset|m L|^{\prime}$ and define $\Phi_{m}^{\mu}: X \rightarrow \mu^{*}$. Then, the map $\Phi_{m}^{\mu}: X \rightarrow \mu^{*}$ is realized as a projection $\mu: X \rightarrow \mathbb{P}^{n}$ (from the center $Z^{N_{m}-n-1}$ determined by $|m L|$). We define $f_{m}^{\mu}:=\Phi_{m}^{\mu} \circ f: \mathbb{C} \rightarrow \mathbb{P}^{n}$.
2. Let R_{μ} be the ramification divisor associated to $\Phi_{m}^{\mu}: X \rightarrow \mathbb{P}^{n}$. For a fixed m, the line bundle $\left[R_{\mu}\right.$] does not depend on μ and we denoted it by F_{m}. Then $\mathbb{G}^{\prime}:=\mathbb{G}\left(n,|m L|^{\prime}\right) \ni \mu \mapsto R_{\mu} \in\left|F_{m}\right|$ becomes a Haar distributed random variable.
3. As f_{m}^{μ} is \mathbb{P}^{n}-valued, we can use the affine coordinate system of \mathbb{P}^{n} to define the Wronskian $W\left(j_{n}\left(f_{m}^{\mu}\right)\right)$ as a $K_{\mathbb{P}^{n}}^{-1}$-valued holomorphic map. Here $j_{n}\left(f_{m}^{\mu}\right)$ denotes the n-th jet of f_{m}^{μ} in terms of the affine coordinates of \mathbb{P}^{n} (we imagine the parallelepiped generated by $f^{\prime}, \ldots, f^{(n)}$, where $\left.f=\left(f_{1}, \ldots, f_{n}\right)\right)$.

4-th Variation : Obstruction to Hyperbolicity (continued)

4. Let $\psi_{\mu} \in H^{0}\left(X, F_{m}\right)$ be the defining section of R_{μ}, i.e. $R_{\mu}=\left(\psi_{\mu}\right)$.
5.

$$
\Psi_{\mu}\left(j_{n} f\right):=\frac{W\left(j_{n}\left(f_{m}^{\mu}\right)\right)}{\psi_{\mu}(f)}: \mathbb{C} \rightarrow \mu^{*} K_{\mathbb{P}^{n}}^{-1} \otimes F_{m}^{-1}=K_{X}^{-1}
$$

is a K_{X}^{-1}-valued meromorphic map. Here we have used the
Riemann-Hurwitz Theorem $\mu^{*} K_{\mathbb{P} n}^{-1}=K_{X}^{-1}+R_{\mu}$.
6. From $m D$ back to D : We consider $D+D^{\prime}$ (s.n.c.) where $D^{\prime} \in|(m-1) D|$ and take the mean over $|(m-1) D|$ of the theory, e.g., we take $\mathfrak{M}_{D^{\prime} \in|(m-1) D|} m_{f, D+D^{\prime}}(r)$.

4-th Variation : Obstruction to Hyperbolicity (continued)

- Question: Does the K_{X}^{-1}-valued meromorphic map $\frac{W\left(j_{n}\left(f_{m}^{\mu}\right)\right)}{\psi_{\mu}(f)}$ play the same role as the Wronskian of a holomorphic curve in \mathbb{P}^{n} (this is $K_{\mathbb{P}^{n}}^{-1}$-valued holomorphic map) ?
- Answer $(*)$: Yes, it does, modulo error term of magnitude $\varepsilon T_{f, E}(r)$. Here, $E \rightarrow X$ is any fixed ample line bundle on X and $\varepsilon>0$ is any given positive number.
(Reason) Ahlfors-Yamanoi LLD + Measure Concentration.
Typical measure concentration phenomenon : Let k be fixed and d very large. Then, randomly chosen k vectors in \mathbb{R}^{d} are almost surely orthogonal.

Digression on Nevanlinna Theory

X : a projective manifold.
$D=(\sigma)$: a s.n.c. divisor. $\left\{h=e^{-\varphi}\right\}$: a Hermitian metric of $[D]$. $f: \mathbb{C} \rightarrow X$ is a non-constant holomorphic curve s.t. $f(0) \notin D$.
(proximity function) $m_{f, D}(r)=\int_{0}^{2 \pi} \log \frac{1}{\left|\sigma\left(f\left(e^{i \theta}\right)\right)\right|_{h}} \frac{d \theta}{2 \pi}$.
(counting function) $N_{f, D}(r)=\int_{0}^{r} \frac{d t}{t} n_{f, D}(t)$,
$n_{f, D}(t)=\sharp\{z \in \mathbb{D}(t) \mid \sigma(f(z))=0\}$.
(order function) $T_{f, c_{1}([D])}(r)=\int_{0}^{r} \frac{d t}{t} \int_{\mathbb{D}(t)} d d^{c} \varphi$. homomorphism modulo $O(1)$.
(linear case : $X=\mathbb{P}^{n}$) $N_{f, \operatorname{Ram}}(r)=N_{W(f), S_{0}}(r)$.
Note : $W(f)$ is $K_{\mathbb{P}^{n}}^{-1}$-valued holomorphic.
(Poincaré-Lelong + Stokes \Rightarrow)
(First Main Theorem) $T_{f, c_{1}([D])}(r)=N_{f, D}(r)+m_{f, D}(r)-m_{f, D}(0)$.

4-th Variation : Obstruction to Hyperbolicity (continued)

- Comparison: The Cartan/Ahlfors Theory applied to $f_{m}^{\mu}: \mathbb{C} \rightarrow \mathbb{P}^{n}$: (CA) $\quad m_{f_{m}^{\mu}, \mu(F)}(r)+N_{W\left(f_{m}^{\mu}\right), S_{0}}(r) \leq T_{f_{m}^{\mu}, K_{\mathbb{P}}^{-1}}(r)+S_{f}(r)(F \in|m D|)$.
Plugging Rieman-Hurwitz $\mu^{*} K_{\mathbb{P} n}^{-1}=K_{X}^{-1}+R_{\mu}$ to (CA), we get $(X) \quad m_{f, D}(r)+\int_{\mu \in \mathbb{G}^{\prime}} d \mu\left\{N_{W\left(f_{m}^{\mu}\right), S_{0}}(r)-T_{f, R_{\mu}}(r)\right\} \leq T_{f, K_{X}^{-1}}(r)+S_{f}(r)$. Here $S_{f}(r)=O\left(\log T_{f}(r)+\log r\right)$.
- Measure Concentration : Let $E \rightarrow X$ be any fixed ample line bundle.

We have the key inequality :
(*) $\quad \int_{\mu \in \mathbb{G}^{\prime}} d \mu\left\{N_{\Psi_{\mu}\left(j_{n} f\right), S_{0}}(r)\right\} \leq \int_{\mu \in \mathbb{G}^{\prime}} d \mu\left\{N_{W\left(f_{m}^{\mu}\right), S_{0}}(r)-T_{f, R_{\mu}}(r)\right\}+$
$\varepsilon T_{f, E}(r)$, where $\varepsilon T_{f, E}(r)$ is the admissible eror term.
We plug this inequality to $(X) \Rightarrow$ If K_{X} is big, the obstruction for hyperbolicity arises from the situation where the procedure defining $\int_{\mu \in \mathbb{G}^{\prime}} d \mu\left\{N_{W\left(f_{m}^{\mu}\right), S_{0}}(r)-T_{f, R_{\mu}}(r)\right\}$ does NOT make sense.

4-th Variation : Obstruction to Hyperbolicity (continued)

- Obstruction to the above argument defining the random variable $\left\{N_{W\left(f_{m}^{\mu}\right), S_{0}}(r)-T_{f, R_{\mu}}(r)\right\}_{\mu \in \mathbb{G}^{\prime}}$ or equivalently $\left\{\Psi_{\mu}\left(j_{n} f\right)\right\}_{\mu \in \mathbb{G}^{\prime}}$ does NOT make sense is classified.
(a) For $\forall \mu \in \mathbb{G}^{\prime}$ the image $f_{m}^{\mu}(\mathbb{C}) \subset$ a proper linear subspace in \mathbb{P}^{n}. We cannot use Cartan/Ahlfors theory.
(b) the image $f(\mathbb{C}) \subset \operatorname{Bs}\left\{R_{\mu}\right\}_{\mu \in \mathbb{G}^{\prime}}$, i.e., the situation characterized by the condition $f(\mathbb{C}) \subset \bigcap_{\mu \in \mathbb{G}^{\prime}} R_{\mu}$. The locus $\bigcap_{\mu \in \mathbb{G}^{\prime}} R_{\mu}$ is characterized by the property that the pull-back of affine coordinates don't constitute a coordinate system on X.
- In the proof of the key inequality $(*)$ [P. Lin and K$]$, we need almost surely existence of local holomorphic coordinate system obtained by the pull-back of affine functions on \mathbb{P}^{n}. If $f(\mathbb{C}) \subset \bigcap_{\mu \in \mathbb{G}^{\prime}} R_{\mu}$, it is absolutely impossible.

4-th Variation : Obstruction to Hyperbolicity (continued)

Note: In both possibilities (a) and (b) we have to take sufficiently large m in order to apply the measure concentration phenomenon.

- It turns out that the possibility (a) never occurs, if D is a s.n.c. divisor.
- The possibility (b) does happen. For instance, the generalized diagonal.
- To prove the key inequality $(*)$ we have to make m large (so that the measure concentration takes place) and fixed. So, the special set should be the union of $\bigcap_{\mu \in \mathbb{G}^{\prime}} R_{\mu}$ over those m. This union is a proper algebraic subset. We fix a large number M (so that measure concentration takes place) and define the special set

$$
Z_{X, D, \varepsilon, E}:=\bigcup_{m \leq M} \bigcap_{\mu \in \mathbb{G}^{\prime}} R_{\mu}
$$

where $\varepsilon>0$ and E means that we admit an error of magnitude $\varepsilon T_{f, E}(r)$ in the key inequality ($*$).

4-th Variation : Obstruction to Hyperbolicity (continued)

- (Example) Linear case: Imagine 4 lines in general position in \mathbb{P}^{2}. A line passing through 2 intersection points among 6 is a generalized diagonal. $X=\mathbb{P}^{n}, D$: linear divisor in general position. Then $\operatorname{Bs}\left\{R_{\mu}\right\}_{\mu \in \mathbb{G}}$ consists of the generalized diagonal. \because Let S be a k-codimensional linear subspace of \mathbb{P}^{n} s.t. $S \cap D$ has component-wise multiplicity $k+1$, i.e., S is a generalized diagonal. The restriction to an ε-displacement S_{ε} of S of a holomorphic section of $[m D]$ vanishing along D is locally expressed as $\left(x+a_{1} \varepsilon y_{1}\right) \ldots\left(x+a_{k} \varepsilon y_{k}\right)\left(x+a_{k+1} \varepsilon y_{k+1}\right)$. We differentiate this quantity along S_{ε} in a direction transversal to S_{ε}. We can choose such a direction so that $\left(x+a_{1} \varepsilon y_{1}\right) \ldots\left(x+a_{k+1} \varepsilon y_{k+1}\right)-x^{k}=O\left(\varepsilon^{2}\right)$. If we choose this direction, the differentiation of this quantity w.r.to ε is of magnitude $O(\varepsilon)$. Therefore S belongs to any R_{μ}.

Thank you very much for your attention!

