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What is generalized Ricci flow?

Given a smooth manifold M, a one parameter family of Riemannian metrics gt
and closed three-forms Ht

is a solution of generalized Ricci flow if

∂

∂t
g = − 2 Rc + 1

2
H2

∂

∂t
H = ∆dH

It admits a natural interpretation as “Ricci flow of connections with torsion.”
Given g ,H, let

∇ = D + 1
2
g−1H.

Then

Rc∇ = Rcg − 1
4
H2 + 1

2
d∗g H.

One can now express the flow equivalently as

∂

∂t
(g − b) = −2 Rc∇, H = H0 + db.
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What is generalized Ricci flow?

We initially note that this flow equation admits a broader class of fixed points.

Let K denote a semisimple Lie group, with bi-invariant metric g . Let H denote
the Cartan three-form, defined on left-invariant vector fields by

H(X ,Y ,Z) = g([X ,Y ],Z).

It follows that the associated Bismut connections

∇± = D ± 1
2
g−1H

are flat. In fact, by a classic result of Cartan-Schouten, all Bismut flat
structures are given by quotients of the above construction. An elementary
instance of this construction is given by

K = SU(2) = S3, g = gS3 , H = dVg
S3 .

Thus one might expect different behavior of the generalized Ricci flow on a
given manifold depending on [H].
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What is generalized Ricci flow?

We can now ask some very broad questions about this equation:

1. What new topological and geometric structures can this flow ‘detect?’

2. What is the topological/geometric significance of the torsion H?

3. What is the relationship of this flow to complex geometry?

It turns out that the answers to these questions, as well as the analytic structure
of generalized Ricci flow, are closely linked to the new field of generalized
geometry, a field emerging recently from investigations into mathematical
physics, and foundational work of Hitchin on generalized Calabi-Yau geometry
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Generalized geometry

The foundational object in generalized geometry is the generalized tangent
bundle, endowed with the neutral inner product and the Dorfman/Courant
bracket:

E = TM ⊕ T ∗M, 〈X + ξ,Y + η〉 = 1
2

(η(X ) + ξ(Y )))

[X + ξ,Y + η] = [X ,Y ] + LXη − iY dξ + iY iXH,

where H is a closed three-form.

Furthermore, a generalized metric is an orthogonal, self-adjoint endomorphism
G of T ⊕ T ∗ such that:

〈Ga, b〉

is a positive definite inner product on T ⊕T ∗. This data is equivalent to a pair
(g , b) of a Riemannian metric on two-form b such that

G = e−b

(
0 g−1

g 0

)
eb =

(
−g−1b g−1

g − bg−1b bg−1

)
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Generalized geometry and generalized Ricci flow

Interestingly, there is no immediate analogue of the Levi-Civita connection for
generalized metrics.

However, Garcia-Fernandez has identified a canonical class
of connections, which have distinct curvature tensors, but a single generalized
Ricci tensor

RC ∼=
(

0 g−1 Rc∇
+

g−1

Rc∇− 0

)

With the above point of view, it is possible to recast the generalized Ricci flow
as a flow of generalized metrics:

∂

∂t
g = − 2 Rc + 1

2
H2

∂

∂t
H = ∆dH

←→ G−1 ∂

∂t
G = − 2RC.
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Fundamental analytic properties

Generalized Ricci flow satisfies the same fundamental regularity properties of
Ricci flow:

1. GRF admits short-time solutions on compact manifolds

2. Solutions exist as long as the Riemann curvature remains bounded

3. GRF is a gradient flow: Let

F(g ,H, f ) =

∫
M

(
R − 1

12
|H|2 + |∇f |2

)
e−f dVg ,

λ(g ,H) = inf
{f | ∫

M e−f dVg =1}
F(g ,H, f ).

Theorem
(Oliynik-Suneeta-Woolgar 2006) Generalized Ricci flow is the gradient flow of
λ.
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S1 invariant solutions on three-manifolds
The first dimension where GRF differs from Ricci flow is three.

However, we
can still obtain flows related to Riemann surfaces by dimensional reduction.
Suppose

S1 → M → Σ

is a principal circle bundle over a Riemann surface. Suppose g is a metric on Σ,
and µ is a principal connection on M. We can then define

G = π∗g + µ⊗ µ

which is an S1 invariant metric on M. Furthermore we obtain F = dµ the
curvature of µ, identified with a two-form on Σ. Then we furthermore set

H = F ∧ µ, dH = 0.

It turns out that this ansatz is preserved by GRF, and moreover reduces to
Ricci-Yang-Mills flow:

∂

∂t
G = − 2 RcG + 1

2
H2

∂

∂t
H = ∆dH

←→

∂

∂t
g = − 2 Rcg +F 2

∂

∂t
µ = − d∗g F
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S1 invariant solutions on three-manifolds

Theorem
( 2021) Let S1 → M → Σ denote a circle bundle over a Riemann
surface Σ. Let (gt , µt) denote a solution to Ricci-Yang-Mills flow on M, with
Gt = π∗gt + µt ⊗ µt the associated one-parameter family of invariant metrics
on M.

The following hold:

1. If χ(Σ) < 0 then (gt , µt) exists on [0,∞) and (M, Gt
2t

) converges to
(Σ, gΣ), where gΣ denotes the canonical metric of constant curvature −1.

2. If χ(Σ) = 0 then (gt , µt) exists on [0,∞) and (M, Gt
2t

) converges to a
point.

3. If χ(Σ) > 0 and c1(M) = 0, then there exists T <∞ such that (gt , µt)
exists on [0,T ), and (M, 1

T−2t
Gt) converges to (Σ× R, gΣ × gR), where

gΣ denotes a metric of constant curvature 1.

4. If χ(Σ) > 0, and c1(M) 6= 0, then (gt , µt) exists on [0,∞) and converges
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Generalized Ricci flow on complex manifolds

Complex, Kähler geometry has a fruitful interaction with Ricci flow
(Kähler-Ricci flow).

This relationship can be extended to more general complex
manifolds using generalized Ricci flow.

Definition
Given (M2n, g , J) a Hermitian manifold, we say it is pluriclosed if

H := d cω =
√
−1
(
∂ − ∂

)
ω, dH = 2

√
−1∂∂ω = 0.

1. This is a natural linear integrability condition on the metric generalizing
the Kähler condition

2. Pluriclosed metrics exist on every compact complex surface (Gauduchon).

3. The local generality of pluriclosed metrics is that of a (1, 0)-form, i.e.
locally ω = ∂α + ∂α.
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Pluriclosed Flow
There is a natural geometric flow of pluriclosed metrics, called pluriclosed flow:

∂ω

∂t
= − ∂∂∗ωω − ∂∂

∗
ωω +

√
−1∂∂ log det g ∼ ∆gg + . . .

Given (M2n, g , J) pluriclosed, we set

H = d cω = −dω(J, J, J) =
√
−1(∂ − ∂)ω

θ = d∗ω ◦ J = “Lee form”

Theorem
( , Tian, 2010) Let (M2n, ωt , J) be a solution to pluriclosed flow. Let
(gt ,Ht) be the associated 1-parameter families of Riemannian metrics and
torsion forms. Then

∂

∂t
g = − 2 Rc + 1

2
H2 − Lθ]g ,

∂

∂t
H = ∆dH − Lθ]H.

Thus generalized Ricci flow preserves the pluriclosed condition, but only after a
nontrivial flow of J.

What kind of global behavior can we expect on non-Kähler surfaces?
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Pluriclosed flow on complex surfaces

Theorem
(Gauduchon-Ivanov 1997) Let (M4, g , J) be a compact complex surface, where
g is pluriclosed and satisfies

0 = Rc− 1
4
H2 + L 1

2
θ]
g

0 = d∗H − iθ]H.

Then either:

1. H = 0 and (M4, J) is Calabi-Yau

2. (M4, J) ∼= C2\{0}/(z1, z2)→ (αz1, βz2) ∼= (S3 × S1, Jαβ), |α| = |β|, a
standard Hopf surface, with g ∼= gS3 ⊕ gS1 a product metric, and
H = dVS3 .

Many other non-Kähler complex surfaces arise as elliptic fibrations:

1. κ(M) = 1: only multiple fibers occur, and M is finitely covered by a
principal T 2 bundle over a Riemann surface Σ with χ(Σ) < 0.

2. κ(M) = 0: only multiple fibers occur, and M is finitely covered by a
principal T 2 bundle over a Riemann surface Σ with χ(Σ) = 0.

3. κ(M) = −∞: The standard Hopf surfaces (|α| = |β|) are principal T 2

bundles over S2.
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Corollary

( 2021) Let (M, J) be a compact complex surface which is the total
space of a holomorphic T 2-principal bundle over a Riemann surface Σ.

1. Suppose χ(Σ) < 0. Every T 2-invariant pluriclosed flow on (M, J), exists
on [0,∞), and (M, ωt

2t
) converges to (Σ, gΣ), where gΣ denotes the

canonical metric of constant curvature −1.

2. Suppose χ(Σ) = 0. Every T 2-invariant pluriclosed flow on (M, J), exists
on [0,∞), and (M, ωt

2t
) converges to a point.

3. Suppose (M, J) ∼= S2 × T 2. Every T 2 invariant pluriclosed flow on (M, J)
exists on [0,T ), and (M, 1

T−2t
ωt) converges to (S2 × R2, ωS2 × ωR2 ).

4. Suppose (M, J) is a standard Hopf surface. Every T 2-invariant pluriclosed
flow on (M, J) exists on [0,∞), and (M, ωt) converges to a multiple of
the standard Hopf metric.
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4. Suppose (M, J) is a standard Hopf surface. Every T 2-invariant pluriclosed
flow on (M, J) exists on [0,∞), and (M, ωt) converges to a multiple of
the standard Hopf metric.



Pluriclosed flow and holomorphic Courant algebroids
Pluriclosed flow can be reformulated using holomorphic Courant algebroids,
after Bismut.

Given a pluriclosed metric ω0, consider

Q = T 1,0 ⊕ Λ1,0

with twisted ∂-operator

∂
ω0 (X + ξ) = ∂X + ∂ξ +

√
−1iX∂ω0

Given now another pluriclosed metric, supose ∂ω − ∂ω0 = ∂β, and define

G =

(
gi j + βikβj lg

lk
√
−1βipg

lp

−
√
−1βjpg

pk g lk

)
.

This is a Hermitian metric, with Hermitian-Yang-Mills curvature tensor SG .
Surprisingly, one has

SG ≡ 0 ←→ Rcg − 1
4
H2 + L 1

2
θ]
g ≡ 0, d∗g H − iθ]H = 0

Furthermore, if ωt is a solution of pluriclosed flow, then

G−1 ∂

∂t
G = − SG .
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Pluriclosed flow on complex surfaces

Theorem
(Jordan, Garcia-Fernandez, 2021)

1. Let (M4, J) be a compact complex non-Kähler surface, κ(M) ≥ 0. Given
ω0 a pluriclosed metric on M, the solution to pluriclosed flow on M exists
on [0,∞).

2. Let (M4, J) be a standard Hopf surface. Given ω0 a pluriclosed metric on
M, the solution to pluriclosed flow with this initial data exists on [0,∞)
and converges to the Hopf metric.

This gives a complete picture of pluriclosed flow in the only case of a
non-Kähler fixed point, and the proof relies crucially on parabolic Schwarz
Lemma computations for the generalized metric G . However, there are many
complex surfaces remaining, such as non-diagonal Hopf surfaces, Class VII+

surfaces: parabolic Inoue, hyperbolic Inoue, etc...
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Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces?

Based on the
Perelman monotonicity for generalized Ricci flow, we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces? Based on the
Perelman monotonicity for generalized Ricci flow,

we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces? Based on the
Perelman monotonicity for generalized Ricci flow, we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces? Based on the
Perelman monotonicity for generalized Ricci flow, we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces? Based on the
Perelman monotonicity for generalized Ricci flow, we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces? Based on the
Perelman monotonicity for generalized Ricci flow, we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Pluriclosed flow on complex surfaces

What might we expect for this remaining zoo of surfaces? Based on the
Perelman monotonicity for generalized Ricci flow, we might expect pluriclosed
flow to converge to a soliton:

0 = Rc− 1
4
H2 + L∇f g

0 = d∗H − i∇fH.

Theorem
( , 2018) There exists a steady soliton metric on all class 1 Hopf surfaces
(|α| 6= |β|)

Theorem
( , Ustinovskiy 2019) These solitons are in fact generalized Kähler.

Theorem
(Apostolov, , Ustinovskiy 2021) These solitons are unique up to
automorphism.

What about complete solitons?



Generalized Kähler-Ricci solitons

A triple (g , I , J) is generalized Kähler if g is compatible with both I and J,

and

d c
I ωI = H = −d c

JωJ , dH = 0.

In dimension four, generically these structures come equipped with a symplectic
form

Ω = g [I , J]−1, Ω ∈ Λ2,0+0,2
I ∩ Λ2,0+0,2

J , ∂IΩ
2,0
I = ∂JΩ2,0

J = 0

In fact, the whole structure can be recovered from the symplectic triple
Ω, IΩ, JΩ. In the case of a hyperKähler manifold (M4, I , J,K), this is the usual
triple of Kähler forms ωI , ωJ , ωK . Surprisingly, there is a classification of
complete generalized Kähler-Ricci solitons:

Theorem
( , Ustinovskiy 2020) Every complete 4-dimensional generalized
Kähler-Ricci soliton either:

1. Admits a toric symmetry

2. Is described by the generalized Gibbons-Hawking ansatz.
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Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)

is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic,

and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton,

we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)

Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Fundamental structural results

Suppose (M2n, g , J) is a Hermitian structure, H = d cω, dH = 0, and

Rc− 1
4
H2 +∇2f = 0,

d∗H + i∇fH = 0.

Proposition

With the hypotheses above, the vector field

V = 1
2

(
θ] −∇f

)
is holomorphic, and JV is Killing.

Thus for a generalized Kähler-Ricci soliton, we obtain two Killing fields

IVI = 1
2
I
(
θ]I −∇f

)
, JVJ = 1

2
J
(
θ]J −∇f

)
Thus either:

1. The isometry group has dimension at least two

2. The vectors IVI and JVJ are aligned, thus there exists a biholomorphic
Killing field.



Canonical local ansatz in nondegeneracy locus

Fix now (M4, g , I , J) a generalized Kähler manifold with defined by a triple of
symplectic forms Ω, IΩ, JΩ, where

Ω = g [I , J]−1.

Thus if M4 admits a free, isometric, biholomorphic S1 action, generated by X ,
we obtain local functions µi such that

dµ1 = iXΩ, dµ2 = iX IΩ, dµ3 = iXJΩ,

and the map µ defines a submersion to a domain in R3.

To describe the geometry, we require a key quantity for such structures, the
angle function

p = − 1
4

tr IJ.

This function p satisfies |p| < 1 and is constant if and only if the structure is
hyperKähler.
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Canonical local ansatz in nondegeneracy locus

As in the Gibbons-Hawking ansatz we set

W = g(X ,X )−1,

and then the quotient space inherits the metric

Wh = W
[
(1− p2)dµ2

1 + dµ2
2 + dµ2

3 − 2pdµ2dµ3

]
= W

[
(1− p2)dµ2

1 + 2(1− p)dµ2
+ + 2(1 + p)dµ2

−

]
,

where

µ+ = 1
2
(µ2 + µ3), µ− = 1

2
(µ2 − µ3).

Furthermore, analyzing the generalized Kähler conditions yields the equation
for W :

W11 + W22 + W33 + 2(pW )23 = 0.

Crucially, this construction is reversible.
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Canonical local ansatz in nondegeneracy locus

The construction so far is not rigid, since the function p is arbitrary.

We fix it
by imposing the soliton equation.

Recall that we have the two soliton vector fields

VI = θ]I −∇f , VJ = θ]J −∇f ,

such that IVI and JVJ are Killing, and have 1-dimensional span. Assuming they
generate an S1 action with fundamental vector field X , we may express

VI = aI IX , VJ = aJJX .

In general for a GK structure, the difference of the Lee vector fields is
Hamiltonian, specifically

VI − VJ = θ]I − θ
]
J = Ω−1dΦ,

where

Φ = log
1− p

1 + p
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Canonical local ansatz in nondegeneracy locus

Thus

Φ = log
1− p

1 + p
= aIµ2 − aJµ3 = a+µ+ + a−µ−.

Hence, up to the choice of a±, we have determined p, and hence the metric

h = (1− p2)dµ2
1 + 2(1− p)dµ2

+ + 2(1 + p)dµ2
−,

on the nondegeneracy locus.

This finishes the local analysis of the soliton equation. To produce complete
examples, we face three interlocked challenges:

1. The moment map is defined only after we remove the degeneracy locus of
σ, and lift to the universal cover. How can we define the moment map
globally?

2. The metric h above is incomplete. How can we complete it?

3. How can we produce and classify viable choices of W?
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Generalized Gibbons-Hawking Ansatz

g = Wh + W−1η2, ∆hW + · · · = 0, dη = ?hdW + . . .

R

p → 1

R

(D2/Zk+
) × R

Poles of W

R R
µ1

p → 1 p → −1

R

(D2/Zk+
) × R

(D2/Zk− ) × R

Poles of W



Thank You!


