A Nakai-Moishezon type criterion for supercritical deformed Hermitian-Yang-Mills equation

Ryosuke Takahashi (Kyushu University)
joint work with
J. Chu (Peking University)
M.-C. Lee (Chinese University of Hong Kong)

2022.11.8, The 28th Symposium on Complex Geometry

§1. Motivation

$(X, \chi, \Omega):$ Calabi-Yau mfd of $\operatorname{dim}_{\mathbb{C}} X=n$
(χ : Ricci-flat Kähler, Ω : nowhere-vanishing holomorphic n-form)
A submanifold $\Sigma \subset X$ of $\operatorname{dim}_{\mathbb{R}} \Sigma=n$ is Lagrangian $:\left.\Longleftrightarrow \chi\right|_{\Sigma}=0$.
Lagrangian $\Sigma \subset X$ is special $:\left.\Longleftrightarrow \operatorname{Im}\left(e^{-\sqrt{-1} \vartheta_{0}} \Omega\right)\right|_{\Sigma}=0\left(\vartheta_{0} \in \mathbb{R}\right)$

Theorem (Harvey-Lawson'82)

Any sLag's are homologically volume minimizing.

Conjecture (Thomas-Yau'02)

A given Lagrangian $\Sigma \subset X$ can be deformed to a sLag by Hamiltonian deformations iff the Hamiltonian isotopy class [Σ] is "stable".

§1. Motivation

X : compact cpx mfd with $\operatorname{dim}_{\mathbb{C}} X=n$ (where X does not have to be CY) $\alpha, \beta \in H^{1,1}(X, \mathbb{R})(\beta$ is Kähler $), \chi \in \beta$

Definition

$\omega \in \alpha$ is deformed Hermitian-Yang-Mills (dHYM): \Longleftrightarrow

$$
\operatorname{Im}\left(e^{-\sqrt{-1} \theta_{0}}(\omega+\sqrt{-1} \chi)^{n}\right)=0 \Longleftrightarrow \sum_{i=1}^{n} \operatorname{arccot}\left(\lambda_{i}\right)=\theta_{0} \quad(\bmod .2 \pi)
$$

where $\theta_{0} \in \mathbb{R}, \lambda_{1} \leqslant \ldots \leqslant \lambda_{n}$ are eigenvalues of $\omega_{i \bar{j}} \chi^{k \bar{j}}$.
Integrating the dHYM equation over X yields

$$
\theta_{0}=\arg \left(\int_{X}(\omega+\sqrt{-1} \chi)^{n}\right) \quad(\bmod .2 \pi) .
$$

- It is possible that $\int_{X}(\omega+\sqrt{-1} \chi)^{n}=0$ when $n>2$ (e.g. $X=\mathbb{C P}^{3} \psi \overline{\mathbb{C P}^{3}}$).

■ If $\omega_{1} \in \beta$ (resp. $\omega_{2} \in \beta$) is dHYM with constant phase θ_{1} (resp. θ_{2}) then $\theta_{1}=\theta_{2}$ (lifted angle).
■ Is it possible to define the lifted angle algebraically? (an open question raised by Collins-Xie-Yau'17)

Theorem (Leung-Yau-Zaslow'01)

When $X \rightarrow B$ is a "SYZ fibration", the sLag equation for sections of $\widehat{X} \rightarrow B$ is equivalent to the dHYM equation on a line bundle $L \rightarrow X$.

§1. Motivation

The goal of this talk is to give a numerical necessary and sufficient condition for the existence a solution to dHYM equation, which confirms the mirror version of Thomas-Yau conjecture.

Plan of Talk:

§2. Collins-Jacob-Yau conjecture
§3. Main results
§4. Regularized maximum
$\S 5$. Proof of the main theorem
§2. Collins-Jacob-Yau conjecture

§2. Collins-Jacob-Yau conjecture

Supercritical Phase Condition

We define the Lagrangian phase operator $Q_{\chi}: X \rightarrow(0, n \pi)$ by

$$
Q_{\chi}(\omega):=\sum_{i=1}^{n} \operatorname{arccot}\left(\lambda_{i}\right), \quad \omega \in \alpha
$$

so that the dHYM equation is $Q_{\chi}(\omega)=\theta_{0}$. Now we assume that $\theta_{0} \in(0, \pi)$ by adding integer multiples of 2π.

Definition

$\omega \in \alpha$ is supercritical $: \Longleftrightarrow Q_{\chi}(\omega)<\pi$.

Remark

$\square \omega$ is supercritical $\Longrightarrow \lambda_{2} \geqslant 0$.

- $Q_{\chi}(\omega)<\Theta_{0}<\pi \Longrightarrow \lambda_{1} \geqslant-C\left(\Theta_{0}\right)$.

§2. Collins-Jacob-Yau conjecture

Subsolutions

We define the operator $P_{\chi}: X \rightarrow(0,(n-1) \pi)$ by

$$
P_{\chi}(\omega):=\max _{k=1, \ldots, n} \sum_{i \neq k} \operatorname{arccot}\left(\lambda_{i}\right), \quad \omega \in \alpha
$$

Definition

$\omega \in \alpha$ is a subsolution $: \Longleftrightarrow P_{\chi}(\omega)<\theta_{0}$.

Theorem (Collins-Jacob-Yau'15)

supercritical dHYM ${ }^{\exists} \omega \in \alpha \Leftrightarrow$ supercritical subsolution ${ }^{\exists} \underline{\omega} \in \alpha$.
■ The subsolution condition is analytic and hard to check in practice.

- It is unknown that the existence of a solution depends only on α, β.

§2. Collins-Jacob-Yau conjecture

Nakai-Moishezon criterion

Theorem (Nakai'63, Moishezon'64, Demailly-Păun'04)
X : smooth proj. var. with $\operatorname{dim}_{\mathbb{C}} X=n$
$\alpha \in H^{1,1}(X ; \mathbb{R})$ is Kähler
$\Longleftrightarrow \alpha^{m} \cdot Y>0,{ }^{\forall} Y \subset X$: subvar. with $m:=\operatorname{dim}_{\mathbb{C}} Y=1, \ldots, n$.
If X is not projective...
$X=\mathbb{C}^{n} / \Lambda$: a flat torus $\left(\Lambda \subset \mathbb{C}^{n}:\right.$ generic lattice $)$

$$
H^{1,1}(X ; \mathbb{R})=\left\{H \mid H \text { is a Hermitian form on } \mathbb{C}^{n} \text { with constant coefficients }\right\}
$$

Let α be the cohomology class corresponding to H. Then

$$
\alpha^{n} \cdot X>0 \Longleftrightarrow \operatorname{det}(H)>0
$$

§2. Collins-Jacob-Yau conjecture

Proposition (Collins-Jacob-Yau'15)
For supercritical $\omega \in \alpha$, the subsolution condition $P_{\chi}(\omega)<\theta_{0}$ is equivalent to

$$
\operatorname{Re}(\omega+\sqrt{-1} \chi)^{m}-\cot \left(\theta_{0}\right) \operatorname{Im}(\omega+\sqrt{-1} \chi)^{m}>0 \quad(m=1, \ldots, n-1)
$$

Conjecture (Collins-Jacob-Yau'15)

supercritical $\mathrm{dHYM}^{\exists} \omega \in \alpha \Longleftrightarrow$

$$
\left(\operatorname{Re}(\alpha+\sqrt{-1} \beta)^{m}-\cot \left(\theta_{0}\right) \operatorname{Im}(\alpha+\sqrt{-1} \beta)^{m}\right) \cdot Y>0
$$

for ${ }^{\forall} Y \subset X$: subvar. of $m:=\operatorname{dim}_{\mathbb{C}} Y=1, \ldots, n-1$.

§2. Collins-Jacob-Yau conjecture

Remark

When X is a smooth projective surface, the above CJY conjecture is a direct consequence from the Nakai-Moishezon criterion.

It is known that the CJY conjecture holds in some cases:

- For smooth Kähler surfaces (Collins-Jacob-Yau'15)
- "A version of" CJY conjecture for compact Kähler manifolds (G. Chen'20)

■ For 3-dimensional smooth projective varieties (Datar-Pingali'20)

- For smooth projective varieties of arbitrary dimension (Chu-Lee-T'21)

§2. Collins-Jacob-Yau conjecture

A version of CJY conjecture

Q. How to choose a correct lift of θ_{0} ?

Definition

A familly of closed real $(1,1)$-forms $\omega_{t} \in \alpha_{t}(t \in[0, \infty))$ is a test family $: \Longleftrightarrow$
! $\omega_{0}=\omega \in \alpha$.
$2 s<t \Rightarrow \omega_{s}<\omega_{t}$.
[3 ${ }^{\exists} T \geqslant 0 ; \omega_{t}>\cot \left(\frac{\theta_{0}}{n}\right) \chi(t \in[T, \infty))$.
$\omega_{t}:$ a test family, $Y \subset X$: subvar. with $m:=\operatorname{dim}_{\mathbb{C}} Y$

$$
F_{\theta_{0}}^{\mathrm{Stab}}\left(Y,\left\{\omega_{t}\right\}, t\right):=\int_{Y}\left(\operatorname{Re}\left(\omega_{t}+\sqrt{-1} \chi\right)^{m}-\cot \left(\theta_{0}\right) \operatorname{Im}\left(\omega_{t}+\sqrt{-1} \chi\right)^{m}\right)
$$

§2. Collins-Jacob-Yau conjecture

Definition

(X, α, β) is uniformly stable along ω_{t}
$: \Longleftrightarrow{ }^{\exists} \epsilon>0$ s.t. ${ }^{\forall} Y \subset X$ subvar. with $m=\operatorname{dim}_{\mathbb{C}} Y=1, \ldots, n,{ }^{\forall} t \in[0, \infty)$,

$$
F_{\theta_{0}}^{\mathrm{Stab}}\left(Y,\left\{\omega_{t}\right\}, t\right) \geqslant(n-m) \epsilon \int_{Y} \chi^{m}
$$

Theorem (Chen'20)
supercritical dHYM ${ }^{\exists} \omega \in \alpha \Longleftrightarrow(X, \alpha, \beta)$ is uniformly stable along ${ }^{\forall}\left\{\omega_{t}\right\}$.

§2. Collins-Jacob-Yau conjecture

(Strategy for proving Chen's theorem)
Under the uniform stability assumption along ω_{t}, consider the following continuity path $\left(C_{t}\right)$ for $\widetilde{\omega}_{t} \in \alpha_{t}$:

$$
\operatorname{Re}\left(\widetilde{\omega}_{t}+\sqrt{-1} \chi\right)^{n}-\cot \left(\theta_{0}\right) \operatorname{Im}\left(\widetilde{\omega}_{t}+\sqrt{-1} \chi\right)^{n}-\widetilde{c}_{t} \chi^{n}=0, \quad \widetilde{c}_{t} \in \mathbb{R}
$$

We use the twisted version of the Collins-Jacob-Yau's criterion as follows:

Theorem (Chen'20)

If there exists supercritical $\underline{\omega} \in \alpha$ such that $P_{\chi}(\underline{\omega})<\theta_{0}$, then there exists supercritical $\omega \in \alpha$ satisfying

$$
\operatorname{Re}(\omega+\sqrt{-1} \chi)^{n}-\cot \left(\theta_{0}\right) \operatorname{Im}(\omega+\sqrt{-1} \chi)^{n}-c \chi^{n}=0
$$

where the constant $c \geqslant 0$ is uniquely determined by α, β.

§2. Collins-Jacob-Yau conjecture

We can easily observe that:

- $\widetilde{c}_{t} \geqslant 0$ by uniform stability assumption, and $\widetilde{c}_{0}=0$ since $\alpha_{0}=\alpha$.
- (C_{t}) admits a solution for all $t \geqslant T$.

Set

$$
\mathcal{T}:=\left\{t \in[0, \infty) \mid\left(C_{t}\right) \text { admits a solution }\right\} .
$$

Then what we have to show is

$$
\mathcal{T}=[0, \infty)
$$

Indeed, this is true, and the lifted angle is determined by

$$
\theta_{0}=(\text { Winding angle of } \eta(t)(t \in[0, \infty))
$$

where the path $\eta(t):=\int_{X}\left(\omega_{t}+\sqrt{-1} \chi\right)^{n} \subset \mathbb{C}$ does not path through the origin $0 \in \mathbb{C}$ by the uniform stability assumption.
§2. Collins-Jacob-Yau conjecture

§2. Collins-Jacob-Yau conjecture

Corollary (Chen'20)

The solvability of the dHYM equation does not depend on the choice of $\chi \in \beta$.
The remaining problems are summed up as follows:
Q. How to remove uniform constant ϵ ?
Q. How to remove assumptions for test families ω_{t} ?

§3. Main results

§3. Main results

Removing the uniform constants

Definition

(X, α, β) is stable along a test family ω_{t}
$: \Longleftrightarrow$

$$
F_{\theta_{0}}^{S t a b}\left(Y,\left\{\omega_{t}\right\}, t\right) \geqslant 0
$$

for ${ }^{\forall} Y \subset X$: subvar. with $m:=\operatorname{dim}_{\mathbb{C}} Y=1, \ldots, n$ and ${ }^{\forall} t \in[0, \infty)$, with strict inequality holding if $m<n$.

Theorem (Chu-Lee-T’21)

supercritical dHYM ${ }^{\exists} \omega \in \alpha \Longleftrightarrow(X, \alpha, \beta)$ is stable along ${ }^{\forall}\left\{\omega_{t}\right\}$.

§3. Main results

Removing test families

Corollary (Chu-Lee-T’21)
supercritical dHYM ${ }^{\exists} \omega \in \alpha \Longleftrightarrow$
${ }^{\forall} \gamma \in H^{1,1}(X ; \mathbb{R}):$ Kähler class, ${ }^{\forall} Y \subset X$: subvar. with $m:=\operatorname{dim}_{\mathbb{C}} Y=1, \ldots, n$, ${ }^{\forall} k=1, \ldots, m$

$$
\left(\left(\operatorname{Re}(\alpha+\sqrt{-1} \beta)^{k}-\cot \left(\theta_{0}\right) \operatorname{Im}(\alpha+\sqrt{-1} \beta)^{k}\right) \cdot \gamma^{m-k}\right) \cdot Y \geqslant 0
$$

with strict inequality holding if $m<n$.

§3. Main results

(Proof) For $\omega \in \alpha$ and a Kähler form $\sigma \in \gamma$, consider

$$
\omega_{t}:=\omega+t \sigma \quad(t \in[0, \infty)) .
$$

Then for ${ }^{\forall} Y \subset X\left(m=\operatorname{dim}_{\mathbb{C}} Y=1, \ldots, n\right)$ we have

$$
\begin{aligned}
& F_{\theta_{0}}^{\operatorname{Stab}}\left(Y,\left\{\omega_{t}\right\}, t\right) \\
& =\int_{Y}\left(\operatorname{Re}\left(\omega_{t}+\sqrt{-1} \chi\right)^{m}-\cot \left(\theta_{0}\right) \operatorname{Im}\left(\omega_{t}+\sqrt{-1} \chi\right)^{m}\right) \\
& =\sum_{k=0}^{m} t^{m-k}\binom{m}{k} \int_{Y}\left(\operatorname{Re}(\omega+\sqrt{-1} \chi)^{k}-\cot \left(\theta_{0}\right) \operatorname{Im}(\omega+\sqrt{-1} \chi)^{k}\right) \wedge \sigma^{m-k}
\end{aligned}
$$

This is a polynomial of t with non-negative coefficients, and positive if $m<n$.

§3. Main results

The projective case

Corollary (Chu-Lee-T'21)

The CJY conjecture is true for all smooth projective varieties X.
(Proof) In the previous corollary we set $\gamma:=c_{1}(L)$ (L : a very ample line bundle).
Then for ${ }^{\forall} Y \subset X$: subvar. with $m:=\operatorname{dim}_{\mathbb{C}} Y,{ }^{\forall} k=1, \ldots, m$, generic members $H_{1}, \ldots, H_{m-k} \in|L|, Y \cap H_{1} \cap \ldots \cap H_{m-k}$ is a subvar. of dimension k in X.

$$
\begin{aligned}
& \left(\left(\operatorname{Re}(\alpha+\sqrt{-1} \beta)^{k}-\cot \left(\theta_{0}\right) \operatorname{Im}(\alpha+\sqrt{-1} \beta)^{k}\right) \cdot \gamma^{m-k}\right) \cdot Y \\
& =\left(\operatorname{Re}(\alpha+\sqrt{-1} \beta)^{k}-\cot \left(\theta_{0}\right) \operatorname{Im}(\alpha+\sqrt{-1} \beta)^{k}\right) \cdot\left(Y \cap H_{1} \cap \ldots \cap H_{m-k}\right)
\end{aligned}
$$

This is non-negative, and positive if $m<n$.

§4. Regularized maximum

§4. Regularized maximum

For $\eta=\left(\eta_{1}, \ldots, \eta_{N}\right) \in(0, \infty)^{N}$ we define the function $M_{\eta}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ by

$$
M_{\eta}\left(t_{1}, \ldots, t_{N}\right):=\int_{\mathbb{R}^{N}} \max \left\{t_{1}+h_{1}, \ldots, t_{N}+h_{N}\right\} \prod_{j=1, \ldots, N} \theta\left(\frac{h_{j}}{\eta_{j}}\right) d h_{1} \ldots d h_{N} .
$$

where θ denotes a non-negative smooth function on \mathbb{R} with support in $[-1,1]$. Then M_{η} satisfies
$1 M_{\eta}\left(t_{1}, \ldots, t_{N}\right)$ is non-decreasing in all variables and convex on \mathbb{R}^{N}.
$2 M_{\eta}\left(t_{1}+a, \ldots, t_{N}+a\right)=M_{\eta}\left(t_{1}, \ldots, t_{N}\right)+a$ for all $a \in \mathbb{R}$.
In particular, we have

$$
\frac{\partial M_{\eta}}{\partial t_{j}} \geqslant 0, \quad \sum_{j=1} \frac{\partial M_{\eta}}{\partial t_{j}}=1
$$

§4. Regularized maximum

$\left\{\Omega_{j}\right\}_{j=1, \ldots, N}$: a family of domains in X φ_{j} : a smooth function on Ω_{j} satisfying:
$1 \varphi_{j}(x)<\max _{k=1, \ldots, N}\left\{\varphi_{k}(x)\right\}$ on each $x \in \partial \Omega_{j}$ (gluing condition)
$2 Q_{\chi}\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{j}\right)<\theta_{0}$ on Ω_{j}
We choose a sufficiently small vector η so that $\varphi_{j}+\eta_{j} \leqslant \max _{k=1, \ldots, N}\left\{\varphi_{k}(x)-\eta_{k}\right\}$, and set $\varphi:=M_{\eta}\left(\varphi_{1}, \ldots, \varphi_{N}\right)$. Then φ is smooth and

$$
\begin{gathered}
\frac{\partial^{2} \varphi}{\partial z^{k} \partial z^{\bar{\ell}}}=\sum_{a, b} \frac{\partial^{2} M_{\eta}}{\partial t_{a} \partial t_{b}} \cdot \frac{\partial \varphi_{a}}{\partial z^{k}} \cdot \frac{\partial \varphi_{b}}{\partial z^{\bar{\ell}}}+\sum_{a} \frac{\partial M_{\eta}}{\partial t_{a}} \cdot \frac{\partial^{2} \varphi_{a}}{\partial z^{k} \partial z^{\bar{\ell}}} \\
\Longrightarrow \omega+\sqrt{-1} \partial \bar{\partial} \varphi \geqslant \sum_{j} \frac{\partial M_{\eta}}{\partial t_{j}} \cdot\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{j}\right) \\
\Longrightarrow Q_{\chi}(\omega+\sqrt{-1} \partial \bar{\partial} \varphi) \leqslant Q_{\chi}\left(\sum_{j} \frac{\partial M_{\eta}}{\partial t_{j}} \cdot\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{j}\right)\right)<\theta_{0} .
\end{gathered}
$$

§5. Proof of the main theorem

§5. Proof of the main theorem

■ The proof of Chen's theorem is based on induction of the dimension of a compact Kähler manifold X.

- The proof of our theorem is based on induction of the dimension of (possibly singular) subvarieties $Y \subset X$.
For a subvariety $Y \subsetneq X$ (resp. $Y=X$), let $\Gamma(Y)$ be the set of germs of smooth functions φ satisfying $Q_{\chi}(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)<\theta_{0}\left(\right.$ resp. $P_{\chi}(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)<\theta_{0}$ and $\left.Q_{\chi}(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)<\pi\right)$ near Y. Note that $\Gamma(Y)$ is well-defined even if Y has singularities.
By Collins-Jacob-Yau's criterion, it is enough to show that:
Theorem (Chu-Lee-T'21)
(X, α, β) is stable along $\left\{\omega_{t}\right\} \Longrightarrow \Gamma(Y) \neq \emptyset\left({ }^{\forall} Y \subset X\right.$: subvar. $)$
In what follows, we only consider the case $Y \subsetneq X$ for simplicity.

§5. Proof of the main theorem

Step 1. (Constructing subsolution on $Y_{\text {reg }}$)

Theorem (Chu-Lee-T’21)

There exists a smooth function φ_{Y} on $Y_{\text {reg }}$ such that
$1 Q_{\chi}\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{Y}\right)<\theta_{0}$ on $Y_{\text {reg }}$.
$2 \varphi_{Y} \rightarrow-\infty$ along $Y_{\text {sing }}$.
(Proof) $\Phi: \widehat{X} \rightarrow X$: the resolution of singularities of an m-dimensional subvariety Y (a composition of blowups along smooth centers)
$\widehat{Y}:=\Phi^{-1}(Y), E_{0}:$ exceptional divisor
Take a fiber metric $h_{E_{0}}$ on $\left[E_{0}\right]$ and $\kappa_{0}>0$ such that $\xi:=\Phi^{*} \chi-\kappa_{0} F_{h_{E_{0}}}>0$ on \widehat{X}. For $0<\varrho \ll 1$, we define

$$
\widehat{\alpha}_{t, \varrho}:=\Phi^{*} \alpha_{t}+\varrho t[\xi], \quad \widehat{\chi} t, \varrho=\Phi^{*} \chi+(\varrho t)^{n} \xi .
$$

§5. Proof of the main theorem

Consider the continuity path $\left(\widehat{C}_{t}\right)$ for $\widehat{\omega}_{t, \varrho} \in \widehat{\alpha}_{t, \varrho}$:

$$
\operatorname{Re}\left(\widehat{\omega}_{t, \varrho}+\sqrt{-1} \widehat{\chi}_{t, \varrho}\right)^{m}-\cot \left(\theta_{0}\right) \operatorname{Im}\left(\widehat{\omega}_{t, \varrho}+\sqrt{-1} \widehat{\chi}_{t, \varrho}\right)^{m}-\widehat{c}_{t, \varrho} \widehat{\chi}_{t, \varrho}^{m}=0, \quad \widehat{c}_{t, \varrho} \in \mathbb{R} .
$$

Then we can show that

- $\widehat{c}_{t, \varrho} \geqslant 0$ and $\left(\widehat{C}_{t}\right)$ is solvable for all $t \in(0,1]$ and $0<\varrho \ll 1$.
- The regularization (local smoothing \& regularized maximum) of the weak limit $\widehat{\omega}_{0,0}:=\lim _{t, \varrho \rightarrow 0} \widehat{\omega}_{t, \varrho}$ satisfies the desired conditions on $Y_{\mathrm{reg}}=\Phi\left(\widehat{Y} \backslash E_{0}\right)$ if $\widehat{\omega}_{0,0}$ has zero Lelong numbers.
- If not, we consider the ε-Lelong number sublevel set $\widehat{Y}_{\varepsilon}$ (for a suitable choice of $\varepsilon>0)$. Then $\Gamma\left(\Phi\left(\widehat{Y}_{\varepsilon}\right)\right) \neq \emptyset$ by induction hypothesis. Thus we may add the pullback of an element in $\Gamma\left(\Phi\left(\widehat{Y}_{\varepsilon}\right)\right)$ when taking the regularized maximum.
§5. Proof of the main theorem

§5. Proof of the main theorem

Approximation of PSH functions

For a PSH function u on $B_{4 R}(0) \subset \mathbb{C}^{m}, z \in B_{3 R}(0)$ and $r \in(0, R / 2)$ we define

$$
u^{(r)}(z):=\int_{\mathbb{C}^{n}} r^{-2 m} \rho\left(\frac{|y|}{r}\right) u(z-y) d y, \quad u_{r}(z):=\sup _{B_{r}(z)} u
$$

where $\rho(t)$ is a smooth non-negative function with support in $[0,1]$.

$$
\nu_{u}(z, r):=\frac{u_{\frac{3}{4}} R(z)-u_{r}(z)}{\log \left(\frac{3}{4} R\right)-\log r} \xrightarrow{r \rightarrow 0} \nu_{u}(z) \quad(\text { Lelong number of } u \text { at } z)
$$

§5. Proof of the main theorem

In order to check the gluing condition, we use the following:
Lemma (Błocki-Kołoziej’07, Chen'19)
For any $r \in(0, R / 2)$ and $z \in B_{3 R}(0)$, the following estimates hold:
$10 \leqslant u_{r}(z)-u_{\frac{r}{2}}(z) \leqslant(\log 2) \nu_{u}(z, r)$
$20 \leqslant u_{r}(z)-u^{(r)}(z) \leqslant \eta \nu_{u}(z, r)$
where a constant $\eta>0$ is defined by

$$
\eta:=\frac{3^{2 m-1}}{2^{2 m-3}} \log 2+\operatorname{Vol}\left(\partial B_{1}(0)\right) \int_{0}^{1} \log \left(\frac{1}{t}\right) t^{2 m-1} \rho(t) d t
$$

§5. Proof of the main theorem

Step 2. (Gluing argument) By induction hypothesis,
U_{1} : neighborhood of $Y_{\text {sing }}, \psi \in C^{\infty}\left(U_{1}, \mathbb{R}\right)$ s.t. $Q_{\chi}(\omega+\sqrt{-1} \partial \bar{\partial} \psi)<\theta_{0}$.
Take open neighborhoods $U_{3} \Subset U_{2} \Subset U_{1}$ of $Y_{\text {sing }}$ in X such that
$1 \varphi_{Y}>\psi+2$ in $Y \cap\left(U_{1} \backslash U_{2}\right)$
$2 \varphi_{Y}<\psi-2$ in $Y \cap U_{3}$
We consider an extension

$$
\widetilde{\varphi}_{Y}:=\varphi_{Y}+A d_{Y}^{2}, \quad A \gg 0
$$

Then we observe that $Q_{\chi}\left(\omega+\sqrt{-1} \partial \bar{\partial} \widetilde{\varphi}_{Y}\right)<\theta_{0}$ in an open neighborhood \widetilde{U} of $Y \backslash W$ in X, and
1 $\widetilde{\varphi}_{Y}>\psi+1$ in $\widetilde{U} \cap\left(U_{1} \backslash U_{2}\right)$
$2 \widetilde{\varphi}_{Y}<\psi-1$ in $\widetilde{U} \cap U_{3}$
Let φ be the regularized maximum of $\left(\widetilde{U}, \widetilde{\varphi}_{Y}\right)$ and $\left(U_{2}, \psi\right)$. Then we conclude that $Q_{\chi}(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)<\theta_{0}$ on a small neighborhood of Y in X.
§5. Proof of the main theorem

Thank you!

