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§1. Motivation

(X, x,Q): Calabi-Yau mfd of dim¢ X =n
(x: Ricci-flat Kéhler, 2: nowhere-vanishing holomorphic n-form)

A submanifold ¥ C X of dimg ¥ = n is Lagrangian <= x|x = 0.
Lagrangian ¥ C X is special :<= Im(e V" 1%Q)|x, = 0 (99 € R)

Theorem (Harvey-Lawson’82)

Any sLag’s are homologically volume minimizing.

Conjecture (Thomas—Yau’02)

A given Lagrangian > C X can be deformed to a sLag by Hamiltonian
deformations iff the Hamiltonian isotopy class [X] is “stable”.

3/36



§1. Motivation

X: compact cpx mfd with dimc X = n (where X does not have to be CY)
o, € HY(X,R) (3 is Kahler), x € 8

Definition

w € a is deformed Hermitian—Yang—Mills (dHYM): <=

Im(e‘*ﬁeO (w+vV-1x)") =0 < Z arccot(A;) =60y (mod. 27)
i=1

where 6y € R, A\; < ... <\, are eigenvalues of wl-jxki .
Integrating the dHYM equation over X yields
0y = arg (/ (w+ \/—1x)”> (mod. 27).
X
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§1. Motivation

m It is possible that [y (w4 +/—1x)" =0 whenn > 2 (e.g. X = CP34CP3).
m If w; € B (resp. wo € B) is dHYM with constant phase 61 (resp. 62) then
01 = 0 (lifted angle).

m [s it possible to define the lifted angle algebraically? (an open question
raised by Collins—Xie-Yau’l7)

Theorem (Leung—Yau—Zaslow’01)

When X — B is a “SYZ fibration”, the sLag equation for sections of X > Bis
equivalent to the dHYM equation on a line bundle L — X.
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§1. Motivation

The goal of this talk is to give a numerical necessary and sufficient condition for the
existence a solution to dHYM equation, which confirms the mirror version of
Thomas—Yau conjecture.

Plan of Talk:

§2. Collins—Jacob—Yau conjecture
§3. Main results

§4. Regularized maximum

§5. Proof of the main theorem
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§2. Collins—Jacob—Yau conjecture

Supercritical Phase Condition

We define the Lagrangian phase operator Q,: X — (0,nm) by
Qy(w) == Zarccot()\i), weEa

so that the dHYM equation is @, (w) = 6p. Now we assume that 6y € (0,7) by
adding integer multiples of 27.

Definition

w € o is supercritical (<= Qy(w) < 7.

Remark

m w is supercritical = Ay > 0.

>
B Qy(w) <Oy <= A1 = —C(Oy).

8/36



§2. Collins—Jacob—Yau conjecture

Subsolutions
We define the operator Py: X — (0, (n — 1)7) by

Py (w) :== max arccot();), w € a.
k=1,...,m iZh
Definition
w € « is a subsolution <= P, (w) < 6y.

Theorem (Collins-Jacob—Yau’l5)

supercritical dHYM “w € a < supercritical subsolution “w € a.

m The subsolution condition is analytic and hard to check in practice.

m [t is unknown that the existence of a solution depends only on «, 3.
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§2. Collins—Jacob—Yau conjecture

Nakai—Moishezon criterion

Theorem (Nakai’63, Moishezon’64, Demailly-P&aun’04)

X: smooth proj. var. with dim¢ X =n
a € HY(X;R) is Kihler
= ™Y >0, Y C X: subvar. with m:=dimcY =1,...,n.

If X is not projective...
X = C"/A: aflat torus (A C C™: generic lattice)

HY(X;R) = {H|H is a Hermitian form on C" with constant coefficients}.
Let a be the cohomology class corresponding to H. Then

a" - X >0<= det(H) > 0.
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§2. Collins-Jacob—Yau conjecture

Proposition (Collins—Jacob—Yau’l5)

For supercritical w € «, the subsolution condition Py (w) < 6 is equivalent to

Re(w + v —1x)™ — cot(fp)Im(w + vV—1x)™ >0 (m=1,...,n—1).

Conjecture (Collins—-Jacob—Yau’15)

supercritical dHYM-w € a <—
(Re(a +v=18)" — cot(6p)Im(a + \/_15)7”) Y >0

for 'Y C X: subvar. of m :=dim¢cY =1,...,n— 1.
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§2. Collins—Jacob—Yau conjecture

Remark

When X is a smooth projective surface, the above CJY conjecture is a direct
consequence from the Nakai—Moishezon criterion.

It is known that the CJY conjecture holds in some cases:
m For smooth Ké&hler surfaces (Collins—Jacob—Yau’15)
m “A version of” CJY conjecture for compact Kéhler manifolds (G. Chen’20)

m For 3-dimensional smooth projective varieties (Datar—Pingali’20)

m For smooth projective varieties of arbitrary dimension (Chu—Lee—T"21)
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§2. Collins—Jacob—Yau conjecture

A version of CJY conjecture

Q. How to choose a correct lift of 67

Definition
A familly of closed real (1,1)-forms wy € oy (t € [0,00)) is a test family <=
W) =w € Q.

§ <t = ws < w.

3T > 0; wy > cot(%l)x (t € [T, 00)).

wy: a test family, Y C X: subvar. with m := dim¢c Y
Fesotab(Y, {we},t) = / (Re(wt + vV —=1x)™ — cot(fp)Im(w + V—lx)m).
Y
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§2. Collins-Jacob—Yau conjecture

(X, a, B) is uniformly stable along w;
<= Je>0s.t. 'Y C X subvar. with m =dimcY =1,...,n, "t €[0,00),

FSRb(Y, {wr), ) > (n —m)e / NG
Y

Theorem (Chen’20)

supercritical dHYM “w € a <= (X, o, B) is uniformly stable along " {w;}.
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§2. Collins—Jacob—Yau conjecture

(Strategy for proving Chen’s theorem)
Under the uniform stability assumption along w;, consider the following continuity
path (C}) for @y € ay:

Re(w: + vV—1x)" — cot(Op)Im(w; + vV—1x)" —ax" =0, ¢ €R.

We use the twisted version of the Collins—Jacob—Yau'’s criterion as follows:

Theorem (Chen’20)

If there exists supercritical w € « such that P, (w) < 6, then there exists
supercritical w € « satisfying

Re(w 4+ v—1x)" — cot(fp)Im(w + v —1x)" — cx™ =0,

where the constant ¢ > 0 is uniquely determined by «, 3.
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§2. Collins—Jacob—Yau conjecture

We can easily observe that:
m ¢; > 0 by uniform stability assumption, and ¢y = 0 since ay = a.
m (C}) admits a solution for all ¢t > T.
Set
T :={t € [0,00)|(C;) admits a solution}.

Then what we have to show is

T =10,00).
Indeed, this is true, and the lifted angle is determined by
0o = (Winding angle of n(t) (¢t € [0,0)),

where the path 7(t) := [y (w; ++v/—1x)" C C does not path through the origin
0 € C by the uniform stability assumption.
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§2. Collins—Jacob—Yau conjecture
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§2. Collins—Jacob—Yau conjecture

Corollary (Chen’20)

The solvability of the dHYM equation does not depend on the choice of x € 3.

The remaining problems are summed up as follows:
Q. How to remove uniform constant €?
Q. How to remove assumptions for test families w;?
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§3. Main results

Removing the uniform constants

Definition

(X, a, B) is stable along a test family wy
<
For (Y, {wi}, 1) = 0
for VY C X: subvar. with m :=dimcY =1,...,n and "¢ € [0, 00), with strict
inequality holding if m < n.

Theorem (Chu—Lee—T"21)

supercritical dHYM “w € a <= (X, o, B) is stable along ¥ {w;}.
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§3. Main results

Removing test families

Corollary (Chu-Lee-T'21)

supercritical dHYM w € o <=
Vy € HYY(X;R): Kihler class, 'Y C X: subvar. with m :=dimcY =1,...,n,
VE=1,...,m

((Re(oc +vV=18)F — cot () Im(cox + \/—_lﬁ)k) -Wm_k> ‘Y >0

with strict inequality holding if m < n.
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§3. Main results

(Proof) For w € o and a Kahler form o € ~, consider
wi=w+to (t€]0,00)).
Then for VY € X (m =dim¢Y =1,...,n) we have
Foy (Y, {wr}, 1)

= /Y (Re(wi + v—1x)™ — cot(6p)Im(w; + vV —1x)™)
= 2 ym—k (7:) /Y (Re(w + \/jlx)k — cot(fp)Im(w + \/jx)k) Aok

This is a polynomial of ¢ with non-negative coefficients, and positive if m < n. [J
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§3. Main results

The projective case

Corollary (Chu-Lee-T’21)

The CJY conjecture is true for all smooth projective varieties X.

(Proof) In the previous corollary we set v := ¢1(L) (L: a very ample line bundle).
Then for VY € X: subvar. with m :=dimc Y, Yk = 1,...,m, generic members
Hy,....,Hp €|Ll,YNHN...N Hpy_j is a subvar. of dimension k in X.

<(Re(a +vV=18)F — cot (o) Im(or + leﬂ)k) . qu_k> Y

= (Re(a + V—=18)F — cot(6p)Im(a + V=18)F) - (Y N H1 N... N Hyppy)

This is non-negative, and positive if m < n. O
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§4. Regularized maximum

For n = (n1,...,nn) € (0,00)" we define the function M,: RV — R by

hy

Mn(tl,...,tN) = max{t1+h1,...,tN+hN} H 9<77'
J

>dh1 ...dhy.
RN j=1,...N

where 6 denotes a non-negative smooth function on R with support in [—1,1].
Then M, satisfies

M,(t1,...,ty) is non-decreasing in all variables and convex on R,
My(ti+a,....tx +a) = My(t1,...,tn) +a for all a € R.

In particular, we have

oM,
ot

oMy _
ot;
g=1

2 0,
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§4. Regularized maximum

{Q;}j=1,..~: a family of domains in X
@;: a smooth function on 2; satisfying:
@;(z) < maxg—1,. ~n{pr(z)} on each x € 0Q; (gluing condition)
Qx(w + vV=190p;) < by on Q;
We choose a sufficiently small vector 1 so that ¢; +n; < maxg=1_ n{er(z) — 0k},
and set ¢ := M, (gpl, ...,oN). Then ¢ is smooth and

282Mn Opq Oy Z@Mn' 0%,

azkaz Ot,0t, 0zF 9t e 028020
_ oM, _
— w+V=100p > ) o (w+ V—10dy;)
- J
J
OM

s O (w + V100p) < QX( " -<w+ﬁ65¢j>> < 8.
J

ot;

26 /36



§5. Proof of the main theorem



§5. Proof of the main theorem

m The proof of Chen’s theorem is based on induction of the dimension of a
compact Kéhler manifold X.

m The proof of our theorem is based on induction of the dimension of (possibly
singular) subvarieties Y C X.

For a subvariety Y C X (resp. Y = X), let I'(Y') be the set of germs of smooth
functions ¢ satisfying Qy(w + v/—199¢) < Oy (resp. Py(w + /—190¢p) < 6y and
Qy(w + v/—190p) < ) near Y. Note that I'(Y) is well-defined even if Y has
singularities.

By Collins—-Jacob—Yau’s criterion, it is enough to show that:

Theorem (Chu-Lee-T'21)

(X, a, B) is stable along {w;} = T'(Y) # 0 (Y C X: subvar.)

In what follows, we only consider the case Y C X for simplicity.
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§5. Proof of the main theorem

Step 1. (Constructing subsolution on Y;eg)
Theorem (Chu-Lee-T'21)

There exists a smooth function ¢y on Y such that

Qx(w +v/—190py) < by on Yieg.
¢y — —oo along Yging.

(Proof) ®: X — X: the resolution of singularities of an m-dimensional subvariety
Y (a composition of blowups along smooth centers)
Y := & 1Y), Ey: exceptional divisor
Take a fiber metric hg, on [Ep] and ko > 0 such that £ := ®*x — mthEO >0on X.
For 0 < p <« 1, we define

Qt 1= P + 0t[¢], Xt 1= P"x + (01)"¢.
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§5. Proof of the main theorem

Consider the continuity path (C}) for Wtp € Qg
Re(@t,o + V—=1Xt,0)" — cot(0o)Im(@r,p + vV —1X1,0)™ — Et,gﬁ?,lg =0, a,€eR

Then we can show that
m G p > 0and (Cy) is solvable for all t € (0,1] and 0 < o < 1.

m The regularization (local smoothing & regularized maximum) of the weak limit
Wo,0 := limy 0 Wy, satisfies the desired conditions on Y = CD(}A/\EO) if @o,0
has zero Lelong numbers.

m If not, we consider the e-Lelong number sublevel set Y. (for a suitable choice of
e > 0). Then F(@(l?g)) # () by induction hypothesis. Thus we may add the
pullback of an element in F(@(}A’g)) when taking the regularized maximum. [J
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§5. Proof of the main theorem

Approximation of PSH functions

For a PSH function v on B4yr(0) C C™, z € B3r(0) and r € (0, R/2) we define

W)= [ nﬂ%(ﬁ")mz—y)dy, wn(2) = sup u,

B, (2)

where p(t) is a smooth non-negative function with support in [0, 1].

usp(z) —ur(2)
vy (z,r) = 4R3 —9, vy(2) (Lelong number of u at 2)
log (2R) —logr
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§5. Proof of the main theorem

In order to check the gluing condition, we use the following:

Lemma (Blocki-Kotoziej’07, Chen’19)

For any r € (0, R/2) and z € B3r(0), the following estimates hold:
0 < up(2) —uz(z) < (log2)vu(z,7)
0 < ur(2) —u(2) < nuy(z,r)

where a constant 1 > 0 is defined by

2m—1 1 1
1= gammg 1082 + Vol0B1(0) [ 1og (;)tzm_lp(t)dt.
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§5. Proof of the main theorem

Step 2. (Gluing argument) By induction hypothesis,
Uy: neighborhood of Ysing, ¥ € C® (U, R) s.t. Qy(w + /—190%) < 6.
Take open neighborhoods Us @ Uy € Uy of Yy in X such that
Hey>yY+2inY rl(l]1\l]2)
py <Y —2inY NU;
We consider an extension
Py =y +Ad¥, A>0
Then we observe that Q, (w + v/—109@y) < f in an open neighborhood U of
Y\W in X, and
Gy > +1inUN (U \Us)
Gy < —1inUNUs
Let ¢ be the regularized maximum of (U, y) and (Us, ). Then we conclude that
Qx(w + v/=190p) < 6y on a small neighborhood of Y in X.
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§5. Proof of the main theorem
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Thank you!
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