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§1. Motivation

(X,χ,Ω): Calabi–Yau mfd of dimCX = n
(χ: Ricci-flat Kähler, Ω: nowhere-vanishing holomorphic n-form)

A submanifold Σ ⊂ X of dimRΣ = n is Lagrangian :⇐⇒ χ|Σ = 0.

Lagrangian Σ ⊂ X is special :⇐⇒ Im(e−
√
−1ϑ0Ω)|Σ = 0 (ϑ0 ∈ R)

Theorem (Harvey–Lawson’82)

Any sLag’s are homologically volume minimizing.

Conjecture (Thomas–Yau’02)

A given Lagrangian Σ ⊂ X can be deformed to a sLag by Hamiltonian
deformations iff the Hamiltonian isotopy class [Σ] is “stable”.

3 / 36



§1. Motivation

X: compact cpx mfd with dimCX = n (where X does not have to be CY)
α, β ∈ H1,1(X,R) (β is Kähler), χ ∈ β

Definition
ω ∈ α is deformed Hermitian–Yang–Mills (dHYM): ⇐⇒

Im
(
e−

√
−1θ0(ω +

√
−1χ)n

)
= 0 ⇐⇒

n∑
i=1

arccot(λi) = θ0 (mod. 2π)

where θ0 ∈ R, λ1 ⩽ . . . ⩽ λn are eigenvalues of ωij̄χ
kj̄ .

Integrating the dHYM equation over X yields

θ0 = arg

(∫
X
(ω +

√
−1χ)n

)
(mod. 2π).
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§1. Motivation

It is possible that
∫
X(ω +

√
−1χ)n = 0 when n > 2 (e.g. X = CP3♯CP3).

If ω1 ∈ β (resp. ω2 ∈ β) is dHYM with constant phase θ1 (resp. θ2) then
θ1 = θ2 (lifted angle).
Is it possible to define the lifted angle algebraically? (an open question
raised by Collins–Xie–Yau’17)

Theorem (Leung–Yau–Zaslow’01)

When X → B is a “SYZ fibration”, the sLag equation for sections of X̂ → B is
equivalent to the dHYM equation on a line bundle L→ X.
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§1. Motivation

The goal of this talk is to give a numerical necessary and sufficient condition for the
existence a solution to dHYM equation, which confirms the mirror version of
Thomas–Yau conjecture.

Plan of Talk:
§2. Collins–Jacob–Yau conjecture
§3. Main results
§4. Regularized maximum
§5. Proof of the main theorem
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§2. Collins–Jacob–Yau conjecture

7 / 36



§2. Collins–Jacob–Yau conjecture

Supercritical Phase Condition
We define the Lagrangian phase operator Qχ : X → (0, nπ) by

Qχ(ω) :=

n∑
i=1

arccot(λi), ω ∈ α

so that the dHYM equation is Qχ(ω) = θ0. Now we assume that θ0 ∈ (0, π) by
adding integer multiples of 2π.

Definition
ω ∈ α is supercritical :⇐⇒ Qχ(ω) < π.

Remark

ω is supercritical =⇒ λ2 ⩾ 0.
Qχ(ω) < Θ0 < π =⇒ λ1 ⩾ −C(Θ0).
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§2. Collins–Jacob–Yau conjecture

Subsolutions
We define the operator Pχ : X → (0, (n− 1)π) by

Pχ(ω) := max
k=1,...,n

∑
i ̸=k

arccot(λi), ω ∈ α.

Definition
ω ∈ α is a subsolution :⇐⇒ Pχ(ω) < θ0.

Theorem (Collins–Jacob–Yau’15)

supercritical dHYM ∃ω ∈ α ⇔ supercritical subsolution ∃ω ∈ α.

The subsolution condition is analytic and hard to check in practice.
It is unknown that the existence of a solution depends only on α, β.
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§2. Collins–Jacob–Yau conjecture

Nakai–Moishezon criterion

Theorem (Nakai’63, Moishezon’64, Demailly-Păun’04)

X: smooth proj. var. with dimCX = n
α ∈ H1,1(X;R) is Kähler
⇐⇒ αm · Y > 0, ∀Y ⊂ X: subvar. with m := dimC Y = 1, . . . , n.

If X is not projective...
X = Cn/Λ: a flat torus (Λ ⊂ Cn: generic lattice)

H1,1(X;R) = {H|H is a Hermitian form on Cn with constant coefficients}.

Let α be the cohomology class corresponding to H. Then

αn ·X > 0 ⇐⇒ det(H) > 0.
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§2. Collins–Jacob–Yau conjecture

Proposition (Collins–Jacob–Yau’15)

For supercritical ω ∈ α, the subsolution condition Pχ(ω) < θ0 is equivalent to

Re(ω +
√
−1χ)m − cot(θ0)Im(ω +

√
−1χ)m > 0 (m = 1, . . . , n− 1).

Conjecture (Collins–Jacob–Yau’15)

supercritical dHYM∃ω ∈ α ⇐⇒(
Re(α+

√
−1β)m − cot(θ0)Im(α+

√
−1β)m

)
· Y > 0

for ∀Y ⊂ X: subvar. of m := dimC Y = 1, . . . , n− 1．
11 / 36



§2. Collins–Jacob–Yau conjecture

Remark
When X is a smooth projective surface, the above CJY conjecture is a direct
consequence from the Nakai–Moishezon criterion.

It is known that the CJY conjecture holds in some cases:
For smooth Kähler surfaces (Collins–Jacob–Yau’15)
“A version of” CJY conjecture for compact Kähler manifolds (G. Chen’20)
For 3-dimensional smooth projective varieties (Datar–Pingali’20)
For smooth projective varieties of arbitrary dimension (Chu–Lee–T’21)
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§2. Collins–Jacob–Yau conjecture

A version of CJY conjecture

Q. How to choose a correct lift of θ0?

Definition
A familly of closed real (1, 1)-forms ωt ∈ αt (t ∈ [0,∞)) is a test family :⇐⇒

1 ω0 = ω ∈ α.
2 s < t⇒ ωs < ωt.
3 ∃T ⩾ 0; ωt > cot( θ0n )χ (t ∈ [T,∞)).

ωt: a test family, Y ⊂ X: subvar. with m := dimC Y

F Stab
θ0 (Y, {ωt}, t) :=

∫
Y

(
Re(ωt +

√
−1χ)m − cot(θ0)Im(ωt +

√
−1χ)m

)
.
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§2. Collins–Jacob–Yau conjecture

Definition
(X,α, β) is uniformly stable along ωt

:⇐⇒ ∃ϵ > 0 s.t. ∀Y ⊂ X subvar. with m = dimC Y = 1, . . . , n，∀t ∈ [0,∞)，

F Stab
θ0 (Y, {ωt}, t) ⩾ (n−m)ϵ

∫
Y
χm.

Theorem (Chen’20)

supercritical dHYM ∃ω ∈ α ⇐⇒ (X,α, β) is uniformly stable along ∀{ωt}.
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§2. Collins–Jacob–Yau conjecture

(Strategy for proving Chen’s theorem)
Under the uniform stability assumption along ωt, consider the following continuity
path (Ct) for ω̃t ∈ αt:

Re(ω̃t +
√
−1χ)n − cot(θ0)Im(ω̃t +

√
−1χ)n − c̃tχ

n = 0, c̃t ∈ R.

We use the twisted version of the Collins–Jacob–Yau’s criterion as follows:

Theorem (Chen’20)

If there exists supercritical ω ∈ α such that Pχ(ω) < θ0, then there exists
supercritical ω ∈ α satisfying

Re(ω +
√
−1χ)n − cot(θ0)Im(ω +

√
−1χ)n − cχn = 0,

where the constant c ⩾ 0 is uniquely determined by α, β.
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§2. Collins–Jacob–Yau conjecture

We can easily observe that:
c̃t ⩾ 0 by uniform stability assumption, and c̃0 = 0 since α0 = α.
(Ct) admits a solution for all t ⩾ T .

Set
T := {t ∈ [0,∞)|(Ct) admits a solution}.

Then what we have to show is
T = [0,∞).

Indeed, this is true, and the lifted angle is determined by

θ0 = (Winding angle of η(t) (t ∈ [0,∞)),

where the path η(t) :=
∫
X(ωt +

√
−1χ)n ⊂ C does not path through the origin

0 ∈ C by the uniform stability assumption.
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§2. Collins–Jacob–Yau conjecture
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§2. Collins–Jacob–Yau conjecture

Corollary (Chen’20)

The solvability of the dHYM equation does not depend on the choice of χ ∈ β.

The remaining problems are summed up as follows:
Q. How to remove uniform constant ϵ?
Q. How to remove assumptions for test families ωt?
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§3. Main results

Removing the uniform constants

Definition
(X,α, β) is stable along a test family ωt

:⇐⇒
F Stab
θ0 (Y, {ωt}, t) ⩾ 0

for ∀Y ⊂ X: subvar. with m := dimC Y = 1, . . . , n and ∀t ∈ [0,∞), with strict
inequality holding if m < n.

Theorem (Chu–Lee–T’21)

supercritical dHYM ∃ω ∈ α ⇐⇒ (X,α, β) is stable along ∀{ωt}.
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§3. Main results

Removing test families

Corollary (Chu–Lee–T’21)

supercritical dHYM ∃ω ∈ α ⇐⇒
∀γ ∈ H1,1(X;R): Kähler class, ∀Y ⊂ X: subvar. with m := dimC Y = 1, . . . , n，
∀k = 1, . . . ,m((

Re(α+
√
−1β)k − cot(θ0)Im(α+

√
−1β)k

)
· γm−k

)
· Y ⩾ 0

with strict inequality holding if m < n.
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§3. Main results

(Proof) For ω ∈ α and a Kähler form σ ∈ γ, consider

ωt := ω + tσ (t ∈ [0,∞)).

Then for ∀Y ⊂ X (m = dimC Y = 1, . . . , n) we have

F Stab
θ0 (Y, {ωt}, t)

=

∫
Y

(
Re(ωt +

√
−1χ)m − cot(θ0)Im(ωt +

√
−1χ)m

)
=

m∑
k=0

tm−k

(
m

k

)∫
Y

(
Re(ω +

√
−1χ)k − cot(θ0)Im(ω +

√
−1χ)k

)
∧ σm−k.

This is a polynomial of t with non-negative coefficients, and positive if m < n. □
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§3. Main results

The projective case

Corollary (Chu–Lee–T’21)

The CJY conjecture is true for all smooth projective varieties X.

(Proof) In the previous corollary we set γ := c1(L)（L: a very ample line bundle).
Then for ∀Y ⊂ X: subvar. with m := dimC Y , ∀k = 1, . . . ,m, generic members
H1, . . . , Hm−k ∈ |L|, Y ∩H1 ∩ . . . ∩Hm−k is a subvar. of dimension k in X.((

Re(α+
√
−1β)k − cot(θ0)Im(α+

√
−1β)k

)
· γm−k

)
· Y

=
(
Re(α+

√
−1β)k − cot(θ0)Im(α+

√
−1β)k

)
· (Y ∩H1 ∩ . . . ∩Hm−k)

This is non-negative, and positive if m < n. □
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§4. Regularized maximum
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§4. Regularized maximum

For η = (η1, . . . , ηN ) ∈ (0,∞)N we define the function Mη : RN → R by

Mη(t1, . . . , tN ) :=

∫
RN

max{t1 + h1, . . . , tN + hN}
∏

j=1,...,N

θ

(
hj
ηj

)
dh1 . . . dhN .

where θ denotes a non-negative smooth function on R with support in [−1, 1].
Then Mη satisfies

1 Mη(t1, . . . , tN ) is non-decreasing in all variables and convex on RN .
2 Mη(t1 + a, . . . , tN + a) =Mη(t1, . . . , tN ) + a for all a ∈ R.

In particular, we have
∂Mη

∂tj
⩾ 0,

∑
j=1

∂Mη

∂tj
= 1.

25 / 36



§4. Regularized maximum

{Ωj}j=1,...,N : a family of domains in X
φj : a smooth function on Ωj satisfying:

1 φj(x) < maxk=1,...,N{φk(x)} on each x ∈ ∂Ωj (gluing condition)
2 Qχ(ω +

√
−1∂∂̄φj) < θ0 on Ωj

We choose a sufficiently small vector η so that φj + ηj ⩽ maxk=1,...,N{φk(x)− ηk},
and set φ :=Mη(φ1, . . . , φN ). Then φ is smooth and

∂2φ

∂zk∂zℓ̄
=

∑
a,b

∂2Mη

∂ta∂tb
· ∂φa

∂zk
· ∂φb

∂zℓ̄
+
∑
a

∂Mη

∂ta
· ∂2φa

∂zk∂zℓ̄

=⇒ ω +
√
−1∂∂̄φ ⩾

∑
j

∂Mη

∂tj
· (ω +

√
−1∂∂̄φj)

=⇒ Qχ(ω +
√
−1∂∂̄φ) ⩽ Qχ

(∑
j

∂Mη

∂tj
· (ω +

√
−1∂∂̄φj)

)
< θ0.
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§5. Proof of the main theorem
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§5. Proof of the main theorem

The proof of Chen’s theorem is based on induction of the dimension of a
compact Kähler manifold X.
The proof of our theorem is based on induction of the dimension of (possibly
singular) subvarieties Y ⊂ X.

For a subvariety Y ⊊ X (resp. Y = X), let Γ(Y ) be the set of germs of smooth
functions φ satisfying Qχ(ω +

√
−1∂∂̄φ) < θ0 (resp. Pχ(ω +

√
−1∂∂̄φ) < θ0 and

Qχ(ω +
√
−1∂∂̄φ) < π) near Y . Note that Γ(Y ) is well-defined even if Y has

singularities.
By Collins–Jacob–Yau’s criterion, it is enough to show that:

Theorem (Chu–Lee–T’21)

(X,α, β) is stable along {ωt} =⇒ Γ(Y ) ̸= ∅ (∀Y ⊂ X: subvar.)

In what follows, we only consider the case Y ⊊ X for simplicity.
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§5. Proof of the main theorem

Step 1. (Constructing subsolution on Yreg)

Theorem (Chu–Lee–T’21)

There exists a smooth function φY on Yreg such that
1 Qχ(ω +

√
−1∂∂̄φY ) < θ0 on Yreg.

2 φY → −∞ along Ysing.

(Proof) Φ: X̂ → X: the resolution of singularities of an m-dimensional subvariety
Y (a composition of blowups along smooth centers)
Ŷ := Φ−1(Y ), E0: exceptional divisor

Take a fiber metric hE0 on [E0] and κ0 > 0 such that ξ := Φ∗χ− κ0FhE0
> 0 on X̂.

For 0 < ϱ≪ 1, we define

α̂t,ϱ := Φ∗αt + ϱt[ξ], χ̂t,ϱ := Φ∗χ+ (ϱt)nξ.
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§5. Proof of the main theorem

Consider the continuity path (Ĉt) for ω̂t,ϱ ∈ α̂t,ϱ:

Re(ω̂t,ϱ +
√
−1χ̂t,ϱ)

m − cot(θ0)Im(ω̂t,ϱ +
√
−1χ̂t,ϱ)

m − ĉt,ϱχ̂
m
t,ϱ = 0, ĉt,ϱ ∈ R.

Then we can show that
ĉt,ϱ ⩾ 0 and (Ĉt) is solvable for all t ∈ (0, 1] and 0 < ϱ≪ 1.
The regularization (local smoothing & regularized maximum) of the weak limit
ω̂0,0 := limt,ϱ→0 ω̂t,ϱ satisfies the desired conditions on Yreg = Φ(Ŷ \E0) if ω̂0,0

has zero Lelong numbers.
If not, we consider the ε-Lelong number sublevel set Ŷε (for a suitable choice of
ε > 0). Then Γ(Φ(Ŷε)) ̸= ∅ by induction hypothesis. Thus we may add the
pullback of an element in Γ(Φ(Ŷε)) when taking the regularized maximum. □
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§5. Proof of the main theorem
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§5. Proof of the main theorem

Approximation of PSH functions

For a PSH function u on B4R(0) ⊂ Cm, z ∈ B3R(0) and r ∈ (0, R/2) we define

u(r)(z) :=

∫
Cn

r−2mρ

(
|y|
r

)
u(z − y)dy, ur(z) := sup

Br(z)
u,

where ρ(t) is a smooth non-negative function with support in [0, 1].

νu(z, r) :=
u 3

4
R(z)− ur(z)

log
(
3
4R

)
− log r

r→0−−−→ νu(z) (Lelong number of u at z)
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§5. Proof of the main theorem

In order to check the gluing condition, we use the following:

Lemma (Błocki–Kołoziej’07, Chen’19)

For any r ∈ (0, R/2) and z ∈ B3R(0), the following estimates hold:
1 0 ⩽ ur(z)− u r

2
(z) ⩽ (log 2)νu(z, r)

2 0 ⩽ ur(z)− u(r)(z) ⩽ ηνu(z, r)

where a constant η > 0 is defined by

η :=
32m−1

22m−3
log 2 + Vol(∂B1(0))

∫ 1

0
log

(
1

t

)
t2m−1ρ(t)dt.
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§5. Proof of the main theorem

Step 2. (Gluing argument) By induction hypothesis,
U1: neighborhood of Ysing, ψ ∈ C∞(U1,R) s.t. Qχ(ω +

√
−1∂∂̄ψ) < θ0.

Take open neighborhoods U3 ⋐ U2 ⋐ U1 of Ysing in X such that
1 φY > ψ + 2 in Y ∩ (U1\U2)

2 φY < ψ − 2 in Y ∩ U3

We consider an extension

φ̃Y := φY +Ad2Y , A≫ 0

Then we observe that Qχ(ω +
√
−1∂∂̄φ̃Y ) < θ0 in an open neighborhood Ũ of

Y \W in X, and
1 φ̃Y > ψ + 1 in Ũ ∩ (U1\U2)

2 φ̃Y < ψ − 1 in Ũ ∩ U3

Let φ be the regularized maximum of (Ũ , φ̃Y ) and (U2, ψ). Then we conclude that
Qχ(ω +

√
−1∂∂̄φ) < θ0 on a small neighborhood of Y in X.
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§5. Proof of the main theorem
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Thank you!
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