A Nakai–Moishezon type criterion for supercritical deformed Hermitian–Yang–Mills equation

Ryosuke Takahashi (Kyushu University)

joint work with J. Chu (Peking University) M.-C. Lee (Chinese University of Hong Kong)

2022.11.8, The 28th Symposium on Complex Geometry

 (X, χ, Ω) : Calabi–Yau mfd of dim_C X = n $(\chi$: Ricci-flat Kähler, Ω : nowhere-vanishing holomorphic *n*-form) A submanifold $\Sigma \subset X$ of dim_R $\Sigma = n$ is Lagrangian : $\iff \chi|_{\Sigma} = 0$. Lagrangian $\Sigma \subset X$ is special : $\iff \operatorname{Im}(e^{-\sqrt{-1}\vartheta_0}\Omega)|_{\Sigma} = 0$ ($\vartheta_0 \in \mathbb{R}$)

Theorem (Harvey–Lawson'82)

Any sLag's are homologically volume minimizing.

Conjecture (Thomas–Yau'02)

A given Lagrangian $\Sigma \subset X$ can be deformed to a sLag by Hamiltonian deformations iff the Hamiltonian isotopy class $[\Sigma]$ is "stable".

X: compact cpx mfd with $\dim_{\mathbb{C}} X = n$ (where X does **not** have to be CY) $\alpha, \beta \in H^{1,1}(X, \mathbb{R})$ (β is Kähler), $\chi \in \beta$

Definition

 $\omega \in \alpha$ is deformed Hermitian–Yang–Mills (dHYM): \iff

$$\operatorname{Im}\left(e^{-\sqrt{-1}\theta_0}(\omega+\sqrt{-1}\chi)^n\right) = 0 \Longleftrightarrow \sum_{i=1}^n \operatorname{arccot}(\lambda_i) = \theta_0 \pmod{2\pi}$$

where $\theta_0 \in \mathbb{R}, \lambda_1 \leq \ldots \leq \lambda_n$ are eigenvalues of $\omega_{i\bar{j}} \chi^{k\bar{j}}$.

Integrating the dHYM equation over X yields

$$\theta_0 = \arg\left(\int_X (\omega + \sqrt{-1}\chi)^n\right) \pmod{2\pi}.$$

4/36

- It is possible that $\int_X (\omega + \sqrt{-1}\chi)^n = 0$ when n > 2 (e.g. $X = \mathbb{CP}^3 \not \equiv \mathbb{CP}^3$).
- If $\omega_1 \in \beta$ (resp. $\omega_2 \in \beta$) is dHYM with constant phase θ_1 (resp. θ_2) then $\theta_1 = \theta_2$ (lifted angle).
- Is it possible to define the lifted angle **algebraically**? (an open question raised by Collins–Xie–Yau'17)

Theorem (Leung–Yau–Zaslow'01)

When $X \to B$ is a "SYZ fibration", the sLag equation for sections of $\widehat{X} \to B$ is equivalent to the dHYM equation on a line bundle $L \to X$.

The goal of this talk is to give a numerical necessary and sufficient condition for the existence a solution to dHYM equation, which confirms the mirror version of Thomas–Yau conjecture.

Plan of Talk:

- §2. Collins–Jacob–Yau conjecture
- §3. Main results
- §4. Regularized maximum
- §5. Proof of the main theorem

Supercritical Phase Condition

We define the Lagrangian phase operator $Q_{\chi} \colon X \to (0, n\pi)$ by

$$Q_{\chi}(\omega) := \sum_{i=1}^{n} \operatorname{arccot}(\lambda_i), \quad \omega \in \alpha$$

so that the dHYM equation is $Q_{\chi}(\omega) = \theta_0$. Now we assume that $\theta_0 \in (0, \pi)$ by adding integer multiples of 2π .

Definition

 $\omega \in \alpha$ is supercritical : $\iff Q_{\chi}(\omega) < \pi$.

Remark

• ω is supercritical $\Longrightarrow \lambda_2 \ge 0$.

$$Q_{\chi}(\omega) < \Theta_0 < \pi \Longrightarrow \lambda_1 \ge -C(\Theta_0).$$

Subsolutions

We define the operator $P_{\chi} \colon X \to (0, (n-1)\pi)$ by

$$P_{\chi}(\omega) := \max_{k=1,\dots,n} \sum_{i \neq k} \operatorname{arccot}(\lambda_i), \quad \omega \in \alpha.$$

Definition

 $\omega \in \alpha$ is a subsolution : $\iff P_{\chi}(\omega) < \theta_0.$

Theorem (Collins–Jacob–Yau'15)

supercritical dHYM $\exists \omega \in \alpha \Leftrightarrow$ supercritical subsolution $\exists \underline{\omega} \in \alpha$.

- The subsolution condition is **analytic** and hard to check in practice.
- It is unknown that the existence of a solution depends only on α , β .

<u>Nakai–Moishezon criterion</u>

Theorem (Nakai'63, Moishezon'64, Demailly-Păun'04)

X: smooth proj. var. with $\dim_{\mathbb{C}} X = n$ $\alpha \in H^{1,1}(X;\mathbb{R})$ is Kähler $\iff \alpha^m \cdot Y > 0, \ \forall Y \subset X$: subvar. with $m := \dim_{\mathbb{C}} Y = 1, \ldots, n$.

If X is not projective... $X = \mathbb{C}^n / \Lambda$: a flat torus ($\Lambda \subset \mathbb{C}^n$: generic lattice)

 $H^{1,1}(X;\mathbb{R}) = \{H|H \text{ is a Hermitian form on } \mathbb{C}^n \text{ with constant coefficients}\}.$

Let α be the cohomology class corresponding to H. Then

$$\alpha^n \cdot X > 0 \Longleftrightarrow \det(H) > 0.$$

Proposition (Collins–Jacob–Yau'15)

For supercritical $\omega \in \alpha$, the subsolution condition $P_{\chi}(\omega) < \theta_0$ is equivalent to

$$\operatorname{Re}(\omega + \sqrt{-1}\chi)^m - \cot(\theta_0)\operatorname{Im}(\omega + \sqrt{-1}\chi)^m > 0 \quad (m = 1, \dots, n-1).$$

Conjecture (Collins–Jacob–Yau'15)

supercritical dHYM^{$\exists \omega \in \alpha \iff$}

$$\left(\operatorname{Re}(\alpha+\sqrt{-1}\beta)^m - \cot(\theta_0)\operatorname{Im}(\alpha+\sqrt{-1}\beta)^m\right) \cdot Y > 0$$

for $\forall Y \subset X$: subvar. of $m := \dim_{\mathbb{C}} Y = 1, \dots, n-1$.

Remark

When X is a smooth projective surface, the above CJY conjecture is a direct consequence from the Nakai–Moishezon criterion.

It is known that the CJY conjecture holds in some cases:

- For smooth Kähler surfaces (Collins–Jacob–Yau'15)
- "A version of" CJY conjecture for compact Kähler manifolds (G. Chen'20)
- For 3-dimensional smooth projective varieties (Datar–Pingali'20)
- For smooth projective varieties of arbitrary dimension (Chu–Lee–T'21)

A version of CJY conjecture

Q. How to choose a correct lift of θ_0 ?

Definition

A family of closed real (1,1)-forms $\omega_t \in \alpha_t$ $(t \in [0,\infty))$ is a **test family** : \iff

1
$$\omega_0 = \omega \in \alpha.$$

2 $s < t \Rightarrow \omega_s < \omega_t.$
3 $\exists T \ge 0; \ \omega_t > \cot(\frac{\theta_0}{n})\chi \ (t \in [T, \infty)).$

 $\omega_t :$ a test family, $Y \subset X :$ subvar. with $m := \dim_{\mathbb{C}} Y$

$$F_{\theta_0}^{\text{Stab}}(Y, \{\omega_t\}, t) := \int_Y \left(\text{Re}(\omega_t + \sqrt{-1}\chi)^m - \cot(\theta_0) \text{Im}(\omega_t + \sqrt{-1}\chi)^m \right).$$

Definition

 (X, α, β) is **uniformly stable** along ω_t : $\iff {}^{\exists} \epsilon > 0$ s.t. ${}^{\forall} Y \subset X$ subvar. with $m = \dim_{\mathbb{C}} Y = 1, \ldots, n, \; {}^{\forall} t \in [0, \infty),$

$$F_{\theta_0}^{\text{Stab}}(Y, \{\omega_t\}, t) \ge (n-m)\epsilon \int_Y \chi^m.$$

Theorem (Chen'20)

supercritical dHYM $\exists \omega \in \alpha \iff (X, \alpha, \beta)$ is uniformly stable along $\forall \{\omega_t\}$.

(Strategy for proving Chen's theorem)

Under the uniform stability assumption along ω_t , consider the following continuity path (C_t) for $\widetilde{\omega}_t \in \alpha_t$:

$$\operatorname{Re}(\widetilde{\omega}_t + \sqrt{-1}\chi)^n - \cot(\theta_0)\operatorname{Im}(\widetilde{\omega}_t + \sqrt{-1}\chi)^n - \widetilde{c}_t\chi^n = 0, \quad \widetilde{c}_t \in \mathbb{R}.$$

We use the twisted version of the Collins–Jacob–Yau's criterion as follows:

Theorem (Chen'20)

If there exists supercritical $\underline{\omega} \in \alpha$ such that $P_{\chi}(\underline{\omega}) < \theta_0$, then there exists supercritical $\omega \in \alpha$ satisfying

$$\operatorname{Re}(\omega + \sqrt{-1}\chi)^n - \cot(\theta_0)\operatorname{Im}(\omega + \sqrt{-1}\chi)^n - \boldsymbol{c}\chi^n = 0,$$

where the constant $c \ge 0$ is uniquely determined by α, β .

We can easily observe that:

- $\tilde{c}_t \ge 0$ by uniform stability assumption, and $\tilde{c}_0 = 0$ since $\alpha_0 = \alpha$.
- (C_t) admits a solution for all $t \ge T$.

Set

$$\mathcal{T} := \{t \in [0, \infty) | (C_t) \text{ admits a solution} \}.$$

Then what we have to show is

$$\mathcal{T} = [0,\infty).$$

Indeed, this is true, and the lifted angle is determined by

 $\theta_0 = ($ Winding angle of $\eta(t) \ (t \in [0, \infty)),$

where the path $\eta(t) := \int_X (\omega_t + \sqrt{-1}\chi)^n \subset \mathbb{C}$ does not path through the origin $0 \in \mathbb{C}$ by the uniform stability assumption.

Corollary (Chen'20)

The solvability of the dHYM equation does not depend on the choice of $\chi \in \beta$.

The remaining problems are summed up as follows: **Q.** How to remove uniform constant ϵ ? **Q.** How to remove assumptions for test families (1)?

Q. How to remove assumptions for test families ω_t ?

Removing the uniform constants

Definition

 $\begin{array}{l} (X,\alpha,\beta) \text{ is stable along a test family } \omega_t \\ : \Longleftrightarrow \\ F_{\theta_0}^{\mathrm{Stab}}(Y,\{\omega_t\},t) \geqslant 0 \end{array}$

for $\forall Y \subset X$: subvar. with $m := \dim_{\mathbb{C}} Y = 1, \ldots, n$ and $\forall t \in [0, \infty)$, with strict inequality holding if m < n.

Theorem (Chu–Lee–T'21)

supercritical dHYM $\exists \omega \in \alpha \iff (X, \alpha, \beta)$ is stable along $\forall \{\omega_t\}$.

Removing test families

Corollary (Chu–Lee–T'21)

supercritical dHYM $\exists \omega \in \alpha \iff$ $\forall \gamma \in H^{1,1}(X; \mathbb{R})$: Kähler class, $\forall Y \subset X$: subvar. with $m := \dim_{\mathbb{C}} Y = 1, \ldots, n$, $\forall k = 1, \ldots, m$

$$\left(\left(\operatorname{Re}(\alpha+\sqrt{-1}\beta)^{k}-\operatorname{cot}(\theta_{0})\operatorname{Im}(\alpha+\sqrt{-1}\beta)^{k}\right)\cdot\gamma^{m-k}\right)\cdot Y \ge 0$$

with strict inequality holding if m < n.

(Proof) For $\omega \in \alpha$ and a Kähler form $\sigma \in \gamma$, consider

$$\omega_t := \omega + t\sigma \quad (t \in [0, \infty)).$$

Then for $\forall Y \subset X \ (m = \dim_{\mathbb{C}} Y = 1, \dots, n)$ we have

$$\begin{aligned} F_{\theta_0}^{\text{Stab}}(Y, \{\omega_t\}, t) \\ &= \int_Y \left(\text{Re}(\omega_t + \sqrt{-1}\chi)^m - \cot(\theta_0) \text{Im}(\omega_t + \sqrt{-1}\chi)^m \right) \\ &= \sum_{k=0}^m t^{m-k} \binom{m}{k} \int_Y \left(\text{Re}(\omega + \sqrt{-1}\chi)^k - \cot(\theta_0) \text{Im}(\omega + \sqrt{-1}\chi)^k \right) \wedge \sigma^{m-k}. \end{aligned}$$

This is a polynomial of t with non-negative coefficients, and positive if m < n. \Box

The projective case

Corollary (Chu–Lee–T'21)

The CJY conjecture is true for all smooth projective varieties X.

(Proof) In the previous corollary we set $\gamma := c_1(L)$ (*L*: a very ample line bundle). Then for $\forall Y \subset X$: subvar. with $m := \dim_{\mathbb{C}} Y$, $\forall k = 1, \ldots, m$, generic members $H_1, \ldots, H_{m-k} \in |L|, Y \cap H_1 \cap \ldots \cap H_{m-k}$ is a subvar. of dimension k in X.

$$\left(\left(\operatorname{Re}(\alpha+\sqrt{-1}\beta)^{k}-\operatorname{cot}(\theta_{0})\operatorname{Im}(\alpha+\sqrt{-1}\beta)^{k}\right)\cdot\gamma^{m-k}\right)\cdot Y$$
$$=\left(\operatorname{Re}(\alpha+\sqrt{-1}\beta)^{k}-\operatorname{cot}(\theta_{0})\operatorname{Im}(\alpha+\sqrt{-1}\beta)^{k}\right)\cdot\left(Y\cap H_{1}\cap\ldots\cap H_{m-k}\right)$$

This is non-negative, and positive if m < n. \Box

§4. Regularized maximum

§4. Regularized maximum

For
$$\eta = (\eta_1, \ldots, \eta_N) \in (0, \infty)^N$$
 we define the function $M_\eta \colon \mathbb{R}^N \to \mathbb{R}$ by

$$M_{\eta}(t_1,\ldots,t_N) := \int_{\mathbb{R}^N} \max\{t_1 + h_1,\ldots,t_N + h_N\} \prod_{j=1,\ldots,N} \theta\left(\frac{h_j}{\eta_j}\right) dh_1 \ldots dh_N.$$

where θ denotes a non-negative smooth function on \mathbb{R} with support in [-1, 1]. Then M_{η} satisfies

M_η(t₁,...,t_N) is non-decreasing in all variables and convex on ℝ^N.
 M_η(t₁ + a,...,t_N + a) = M_η(t₁,...,t_N) + a for all a ∈ ℝ.
 In particular, we have

$$\frac{\partial M_{\eta}}{\partial t_j} \ge 0, \quad \sum_{j=1} \frac{\partial M_{\eta}}{\partial t_j} = 1.$$

§4. Regularized maximum

 $\{\Omega_j\}_{j=1,\ldots,N}$: a family of domains in X φ_j : a smooth function on Ω_j satisfying:

1 $\varphi_j(x) < \max_{k=1,\dots,N} \{\varphi_k(x)\}$ on each $x \in \partial \Omega_j$ (gluing condition) 2 $Q_{\chi}(\omega + \sqrt{-1}\partial \bar{\partial} \varphi_j) < \theta_0$ on Ω_j

We choose a sufficiently small vector η so that $\varphi_j + \eta_j \leq \max_{k=1,\dots,N} \{\varphi_k(x) - \eta_k\}$, and set $\varphi := M_\eta(\varphi_1, \dots, \varphi_N)$. Then φ is smooth and

$$\frac{\partial^2 \varphi}{\partial z^k \partial z^{\overline{\ell}}} = \sum_{a,b} \frac{\partial^2 M_{\eta}}{\partial t_a \partial t_b} \cdot \frac{\partial \varphi_a}{\partial z^k} \cdot \frac{\partial \varphi_b}{\partial z^{\overline{\ell}}} + \sum_a \frac{\partial M_{\eta}}{\partial t_a} \cdot \frac{\partial^2 \varphi_a}{\partial z^k \partial z^{\overline{\ell}}}$$

0...

$$\implies \omega + \sqrt{-1}\partial\bar{\partial}\varphi \geqslant \sum_{j} \frac{\partial M_{\eta}}{\partial t_{j}} \cdot (\omega + \sqrt{-1}\partial\bar{\partial}\varphi_{j})$$

$$\implies Q_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\varphi) \leqslant Q_{\chi}\left(\sum_{j} \frac{\partial M_{\eta}}{\partial t_{j}} \cdot (\omega + \sqrt{-1}\partial\bar{\partial}\varphi_{j})\right) < \theta_{0}.$$

§5. Proof of the main theorem

$\S5.$ Proof of the main theorem

- The proof of Chen's theorem is based on induction of the dimension of a compact Kähler **manifold** X.
- The proof of our theorem is based on induction of the dimension of (possibly singular) subvarieties $Y \subset X$.

For a subvariety $Y \subsetneq X$ (resp. Y = X), let $\Gamma(Y)$ be the set of germs of smooth functions φ satisfying $Q_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\varphi) < \theta_0$ (resp. $P_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\varphi) < \theta_0$ and $Q_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\varphi) < \pi$) near Y. Note that $\Gamma(Y)$ is well-defined even if Y has singularities.

By Collins–Jacob–Yau's criterion, it is enough to show that:

Theorem (Chu–Lee–T'21)

 (X, α, β) is stable along $\{\omega_t\} \Longrightarrow \Gamma(Y) \neq \emptyset (\forall Y \subset X: \text{ subvar.})$

$\S5.$ Proof of the main theorem

Step 1. (Constructing subsolution on Y_{reg})

Theorem (Chu–Lee–T'21)

There exists a smooth function φ_Y on Y_{reg} such that

$$Q_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\varphi_Y) < \theta_0 \text{ on } Y_{\text{reg}}$$

2
$$\varphi_Y \to -\infty$$
 along Y_{sing} .

(Proof) $\Phi: \hat{X} \to X$: the resolution of singularities of an *m*-dimensional subvariety Y (a composition of blowups along smooth centers) $\hat{Y} := \Phi^{-1}(Y), E_0$: exceptional divisor

Take a fiber metric h_{E_0} on $[E_0]$ and $\kappa_0 > 0$ such that $\xi := \Phi^* \chi - \kappa_0 F_{h_{E_0}} > 0$ on \widehat{X} . For $0 < \rho \ll 1$, we define

$$\widehat{\alpha}_{t,\varrho} := \Phi^* \alpha_t + \varrho t[\xi], \quad \widehat{\chi}_{t,\varrho} := \Phi^* \chi + (\varrho t)^n \xi.$$

Consider the continuity path (\widehat{C}_t) for $\widehat{\omega}_{t,\varrho} \in \widehat{\alpha}_{t,\varrho}$:

$$\operatorname{Re}(\widehat{\omega}_{t,\varrho} + \sqrt{-1}\widehat{\chi}_{t,\varrho})^m - \cot(\theta_0)\operatorname{Im}(\widehat{\omega}_{t,\varrho} + \sqrt{-1}\widehat{\chi}_{t,\varrho})^m - \widehat{c}_{t,\varrho}\widehat{\chi}_{t,\varrho}^m = 0, \quad \widehat{c}_{t,\varrho} \in \mathbb{R}.$$

Then we can show that

- $\widehat{c}_{t,\varrho} \ge 0$ and (\widehat{C}_t) is solvable for all $t \in (0,1]$ and $0 < \varrho \ll 1$.
- The regularization (local smoothing & regularized maximum) of the weak limit $\widehat{\omega}_{0,0} := \lim_{t,\varrho \to 0} \widehat{\omega}_{t,\varrho}$ satisfies the desired conditions on $Y_{\text{reg}} = \Phi(\widehat{Y} \setminus E_0)$ if $\widehat{\omega}_{0,0}$ has zero Lelong numbers.
- If not, we consider the ε -Lelong number sublevel set $\widehat{Y}_{\varepsilon}$ (for a suitable choice of $\varepsilon > 0$). Then $\Gamma(\Phi(\widehat{Y}_{\varepsilon})) \neq \emptyset$ by induction hypothesis. Thus we may add the pullback of an element in $\Gamma(\Phi(\widehat{Y}_{\varepsilon}))$ when taking the regularized maximum. \Box

§5. Proof of the main theorem

31 / 36

Approximation of PSH functions

For a PSH function u on $B_{4R}(0) \subset \mathbb{C}^m$, $z \in B_{3R}(0)$ and $r \in (0, R/2)$ we define

$$u^{(r)}(z) := \int_{\mathbb{C}^n} r^{-2m} \rho\left(\frac{|y|}{r}\right) u(z-y) dy, \quad u_r(z) := \sup_{B_r(z)} u,$$

where $\rho(t)$ is a smooth non-negative function with support in [0, 1].

$$\nu_u(z,r) := \frac{u_{\frac{3}{4}R}(z) - u_r(z)}{\log\left(\frac{3}{4}R\right) - \log r} \xrightarrow{r \to 0} \nu_u(z) \quad (\text{Lelong number of } u \text{ at } z)$$

32 / 36

In order to check the gluing condition, we use the following:

Lemma (Błocki–Kołoziej'07, Chen'19)

For any $r \in (0, R/2)$ and $z \in B_{3R}(0)$, the following estimates hold:

$$1 \quad 0 \leqslant u_r(z) - u_{\frac{r}{2}}(z) \leqslant (\log 2)\nu_u(z,r)$$

$$2 \quad 0 \leq u_r(z) - u^{(r)}(z) \leq \eta \nu_u(z, r)$$

where a constant $\eta > 0$ is defined by

$$\eta := \frac{3^{2m-1}}{2^{2m-3}} \log 2 + \operatorname{Vol}(\partial B_1(0)) \int_0^1 \log\left(\frac{1}{t}\right) t^{2m-1} \rho(t) dt.$$

Step 2. (Gluing argument) By induction hypothesis, U_1 : neighborhood of $Y_{\text{sing}}, \psi \in C^{\infty}(U_1, \mathbb{R})$ s.t. $Q_{\chi}(\omega + \sqrt{-1}\partial \bar{\partial} \psi) < \theta_0$. Take open neighborhoods $U_3 \Subset U_2 \Subset U_1$ of Y_{sing} in X such that

- $2 \varphi_Y < \psi 2 \text{ in } Y \cap U_3$

We consider an extension

$$\widetilde{\varphi}_Y := \varphi_Y + A d_Y^2, \quad A \gg 0$$

Then we observe that $Q_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\tilde{\varphi}_Y) < \theta_0$ in an open neighborhood \tilde{U} of $Y \setminus W$ in X, and

1
$$\widetilde{\varphi}_Y > \psi + 1$$
 in $\widetilde{U} \cap (U_1 \setminus U_2)$
2 $\widetilde{\varphi}_Y < \psi - 1$ in $\widetilde{U} \cap U_3$

Let φ be the regularized maximum of $(\widetilde{U}, \widetilde{\varphi}_Y)$ and (U_2, ψ) . Then we conclude that $Q_{\chi}(\omega + \sqrt{-1}\partial\bar{\partial}\varphi) < \theta_0$ on a small neighborhood of Y in X.

§5. Proof of the main theorem

35 / 36

Thank you!