多重標準線形系の L^{p} 構造の極限について

高山 茂晴
（東京大学）

第28回複素幾何シンポジウム

2022年11月7日～11日，金沢

Abstract

We study limits of the canonical L^{p}-space structures on pluricanonical systems on compact complex manifolds. We construct a canonical mixed L^{p}-space structure on the central fiber of a one parameter degeneration. We prove that the canonical L^{p}-spaces on smooth nearby fibers converge to the mixed L^{p}-space.

§1. Introduction

X a compact complex manifolds, n-dim.
Intrinsic objects: $\left(H^{0}\left(X, m K_{X}\right),\| \|\right)$.
$s \in H^{0}\left(X, m K_{X}\right) m$-canonical form, $m \in \mathbb{Z}_{>0}$, put $p=2 / m \leq 2$.
$|s|^{2 / m}=|s \wedge \bar{s}|^{1 / m}$ a semi-positive volume form on X.
The L^{p}-pseudo-norm :

$$
\|s\|:=\left(\int_{X}|s|^{p}\right)^{1 / p}=\left(\int_{X}|s \wedge \bar{s}|^{1 / m}\right)^{m / 2} .
$$

$\|s\|$ defines an L^{2}-inner product if $m=1$, an L^{1}-norm if $m=2$,

$$
\text { merely an } L^{p} \text {-pseudo-norm if } m>2 .
$$

[NS], [BP], [PT], [HPS], ... : m-Bergman kernel metric, m-Narasimhan-Simha metric, variations of these metrics in a holomorphic family $\mathcal{X} \rightarrow S, \ldots$

We study the limit of L^{p}-space structures in a family, after Mabuchi. Let $f: X \rightarrow C=\{|t|<1\}$ be a proper surjective holomorphic, . . .
f smooth over C^{*}, the central fiber X_{0} is a reduced SNC divisor.
We have L^{p}-spaces $\left\{\left(H^{0}\left(X_{t}, m K_{X_{t}}\right),\| \|_{t}\right)\right\}_{t \neq 0}$.
We can define a mixed L^{p}-space structure on
(the restricted linear subspace) $f_{*}\left(m K_{X / C}\right)_{0} \subset H^{0}\left(X_{0}, m K_{X_{0}}\right)$.
Theorem 1.1. $\left(H^{0}\left(X_{t}, m K_{X_{t}}\right),\| \|_{t}\right) \longrightarrow\left(f_{*}\left(m K_{X / C}\right)_{0},\| \|_{0}\right)$ as $t \rightarrow 0$ in $\mathcal{M}_{N, p}$ with respect to the distance introduced by Mabuchi.

Here, $\mathcal{M}_{N, p}$: the space of all isomorphism classes of L^{p}-space structures of \mathbb{C}^{N}.
H. Mazur ' 76 : for a family of stable curves.

Mabuchi : for a family of canonically polarized manifolds.

Contents

§1. Introduction
§2. The space of L^{p}-structures, Mabuchi's distance, . . .
$\S 3$. Mixed L^{p}-space structure on $H^{0}\left(X, m K_{X}\right)$ for a SNC variety X
§4. Asymptotic behavior of L^{p}-pseudo-norms / fiber integrals
§2. The space of L^{p}-structures, Mabuchi's distance, . . .
$V \cong \mathbb{C}^{N}$. We take an euclidean metric $\left|\left|=| |_{\text {eu }} \cdot p \in(0,2]\right.\right.$ (mostly $p \in(0,1]$).
Def. 2.1. $\left\|\|: V \rightarrow \mathbb{R}_{\geq 0}\right.$ is an L^{p}-pseudo-norm, if
(1) $\|v\|=0 \Longleftrightarrow v=0 \quad(v \in V)$,
(2) $\|c v\|=|c|\|v\| \quad(c \in \mathbb{C}, v \in V)$,
(3) $\|u+v\|^{p} \leq\|u\|^{p}+\|v\|^{p} \quad(u, v \in V)$. (Not $\|u+v\| \leq\|u\|+\|v\|$ in general.)

Notation 2.2. Let $(V,\| \|)$ be an L^{p}-space (of dimension N).
(1) The indicatrix (the unit ball) $\Sigma:=\{v \in V ;\|v\| \leq 1\}$.
(2) For a basis $\boldsymbol{v}=\left\{v_{1}, \ldots, v_{N}\right\}$ of V, we let the associated ellipsoid

$$
E(\boldsymbol{v})=\left\{z \cdot \boldsymbol{v}=\sum_{i=1}^{N} z_{i} v_{i} ; z \in \mathbb{C}^{N},|z| \leq 1\right\}
$$

(3) Let \mathcal{B} be the set of all bases \boldsymbol{v} of V such that $E(\boldsymbol{v}) \supset \Sigma$.

Prop. 2.3. A special basis for $(V,\| \|)$ (substitute for $O N B$).
\exists a basis $\boldsymbol{v} \in \mathcal{B}$, i.e. $E(\boldsymbol{v}) \supset \Sigma$, whose volume is minimum :

$$
\left|\frac{v_{1} \wedge v_{2} \wedge \ldots \wedge v_{N}}{w_{1} \wedge w_{2} \wedge \ldots \wedge w_{N}}\right| \leq 1
$$

for all $\boldsymbol{w}=\left\{w_{1}, \ldots, w_{N}\right\} \in \mathcal{B}$. It is unique up to the action of $U(N)$.
Def. 2.4. Mabuchi's distance on $\mathcal{M}_{N, p}$:
the set of isomorphism classes of all L^{p}-space structures of \mathbb{C}^{N}.

- For $\underline{V}=(V,\| \|) \in \mathcal{M}_{N, p}$ and a basis \boldsymbol{v} for V, we let

$$
f_{\boldsymbol{v}}(s):=\|s \cdot \boldsymbol{v}\|: S^{2 N-1} \longrightarrow \mathbb{R}_{\geq 0}, \quad S^{2 N-1}=\left\{s \in \mathbb{C}^{N} ;|s|=1\right\} .
$$

- Put $d: \mathcal{M}_{N, p} \times \mathcal{M}_{N, p} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
d\left(\underline{V}, \underline{V}^{\prime}\right)=\min _{\boldsymbol{v}, \boldsymbol{v}^{\prime}}\left\{\left\|f_{\boldsymbol{v}}-f_{\boldsymbol{v}^{\prime}}\right\|_{L^{\infty}\left(S^{2 N-1}\right)}\right\},
$$

where $\boldsymbol{v}\left(\right.$ resp. $\left.\boldsymbol{v}^{\prime}\right)$ are special bases for \underline{V} (resp. $\left.\underline{V}^{\prime}\right)$.
Theorem 2.5 (Mabuchi). The set $\mathcal{M}_{N, p}$ is compact with respect to the topology induced from the distance d.
§3. Mixed L^{p}-space structure on $H^{0}\left(X, m K_{X}\right)$ for a SNC variety X $X=\bigcup_{i=1}^{r} X_{i} \quad$ a SNC variety, n-dim.

3.1. Poincaré residue, . . .

$a_{0}: X^{[0]}:=\amalg_{i=1}^{r} X_{i} \longrightarrow X$ the normalization.
$a_{k}: X^{[k]}:=\amalg_{i_{0}<i_{1}<\ldots<i_{k}}\left(X_{i_{0}} \cap X_{i_{1}} \cap \ldots \cap X_{i_{k}}\right) \longrightarrow X$
the normalization of $(n-k)$-dim stratum of X.

$$
X^{[k]+1}:=a_{k}^{-1}\left(a_{k+1}\left(X^{[k+1]}\right)\right) \text { a SNC divisor on } X^{[k]} .
$$

- The Poincaré residue map gives

$$
\operatorname{Res}_{k}: H^{0}\left(X, m K_{X}\right) \longrightarrow H^{0}\left(X^{[k]}, m\left(K_{X^{[k]}}+X^{[k]+1}\right)\right)
$$

Letting

$$
W_{k}=\operatorname{Res}_{k}^{-1}\left(H^{0}\left(X^{[k]}, m K_{X^{[k]}}\right)\right) \subset H^{0}\left(X, m K_{X}\right),
$$

we obtain a filtration

$$
H^{0}\left(X^{[0]}, m K_{X[0]}\right) \cong W_{0} \subset W_{1} \subset \cdots \subset W_{n-1} \subset W_{n}=H^{0}\left(X, m K_{X}\right) .
$$

$W_{-1}=\{0\}$ formally.

Note that

$$
\operatorname{Res}_{k}: W_{k} \longrightarrow H^{0}\left(X^{[k]}, m K_{X^{[k]}}\right), \quad \operatorname{Res}_{k}\left(W_{k-1}\right)=0, \operatorname{Res}_{k+1}\left(W_{k}\right)=0 .
$$

3.2. Mixed L^{p}-space structure.

Let $G r_{k}=W_{k} / W_{k-1}$ with an injection $\operatorname{Res}_{k}: G r_{k} \rightarrow H^{0}\left(X^{[k]}, m K_{X^{[k]}}\right)$.
Here $H^{0}\left(X^{[k]}, m K_{X^{[k]}}\right)$ admits the L^{p}-space structure $\left\|\|_{k}\right.$. We put

$$
\left(G r H^{0}\left(X, m K_{X}\right),\| \|\right):=\bigoplus_{k=0}^{n}\left(G r_{k},\| \|_{k}\right)
$$

the orthogonal direct sum, i.e. $\left\|\sum_{k} s_{k}\right\|^{p}=\sum_{k}\left\|s_{k}\right\|_{k}^{p}$.

- For a linear subspace $H \subset H^{0}\left(X, m K_{X}\right)$, one can restrict everything on H, and obtain

$$
(G r H,\| \|)=\bigoplus_{k=0}^{n}\left(G r_{H, k},\| \|_{k}\right) .
$$

E.g. If X_{0} is a SNC variety, $X_{0} \subset X$ is a fiber of $f: X \rightarrow C$,

$$
H=H^{0}\left(X \mid X_{0}, m K_{X / C}\right):=\operatorname{Image}\left(H^{0}\left(X, m K_{X / C}\right) \longrightarrow H^{0}\left(X_{0}, m K_{X_{0}}\right)\right)
$$

Theorem 3.3. Let $f: X \rightarrow C=\{|t|<1\}$ be a proper surjective, . . ., $m \in \mathbb{Z}_{>0}, f_{*}\left(m K_{X / C}\right)$ is of rank $N>0$.
(1) If X_{0} is reduced SNC, then

$$
\left(H^{0}\left(X_{t}, m K_{X_{t}}\right),\| \|_{t}\right) \longrightarrow\left(G r H^{0}\left(X \mid X_{0}, m K_{X / C}\right),\| \|\right)
$$

as $t \rightarrow 0$ in $\mathcal{M}_{N, p}$.
(2) Even if f is not semi-stable, $\exists!\left(V_{0},\| \|_{0}\right) \in \mathcal{M}_{N, p}$ s.t.

$$
\left(H^{0}\left(X_{t}, m K_{X_{t}}\right),\| \|_{t}\right) \longrightarrow\left(V_{0},\| \|_{0}\right)
$$

as $t \rightarrow 0$. (After taking a semi-stable reduction, we can reduced to the situation (1).)
(3) Suppose f is projective. If X_{0} is normal and has canonical singularities at worst. Then the limit $\left(V_{0},\| \|_{0}\right)$ in (2) is $\left(H^{0}\left(X_{0}, m K_{X_{0}}\right),\| \|_{0}\right)$.
§4. Asymptotic behavior of L^{p}-pseudo-norms / fiber integrals
Let $f: X \rightarrow C=\{|t|<1\} \ldots$ semi-stable, $X_{0}=F$ reduced SNC.
Prop. 4.1. Let $s \in H^{0}\left(X, m K_{X / C}\right)$, and $s_{t}=\left.s\right|_{X_{t}} \in H^{0}\left(X_{t}, m K_{X_{t}}\right)$ for $t \in C$. Suppose $s_{0} \in W_{H, k}$, i.e., $\operatorname{Res}_{k} s_{0} \in H^{0}\left(F^{[k]}, m K_{F^{[k]}}\right)$. Then, $\exists \delta>0, \exists A_{s}>0$ st. for $\forall t \in C, 0<|t|<\delta$,

$$
\left|\left\|s_{t}\right\|_{t}^{p}-\left(\int_{F^{[k]}}\left|\operatorname{Res}_{k} s_{0}\right|^{p}\right) \frac{(2 \pi)^{k}}{k!}\left(-\log |t|^{2}\right)^{k}\right| \leq A_{s}(-\log |t|)^{k-1}
$$

holds.
Uniform version 4.2. Let $s_{1}, \ldots, s_{\ell} \in H^{0}\left(X, m K_{X / C}\right)$, and $s_{1,0}, \ldots, s_{\ell, 0} \in$ $W_{H, k}$ (we allow $s_{i, 0} \in W_{H, k-1}$). Then, $\exists \delta>0, \exists A>0$ st. for $\forall t \in C, 0<$ $|t|<\delta$, and $\forall z=\left(z_{1}, \ldots, z_{\ell}\right) \in \mathbb{C}^{\ell},|z|_{e u} \leq 1$,

$$
\left|\left\|\sum_{i} z_{i} s_{i, t}\right\|_{t}^{p}-\left(\int_{F^{[k]}}\left|\operatorname{Res}_{k} \sum_{i} z_{i} s_{i, 0}\right|^{p}\right) \frac{(2 \pi)^{k}}{k!}\left(-\log |t|^{2}\right)^{k}\right| \leq A(-\log |t|)^{k-1}
$$

holds.

Continuity of a normalized L^{p}-pseudo-norm. $\quad F=X_{0}$.
May suppose $f_{*}\left(m K_{X / C}\right) \cong \bigoplus_{i=1}^{N} \mathcal{O}_{C} s_{i}$

$$
\text { with } s_{i} \in H^{0}\left(C, f_{*}\left(m K_{X / C}\right)\right) \cong H^{0}\left(X, m K_{X / C}\right) \text {. }
$$

We'd like to show the continuity of $\left(f_{*}\left(m K_{X / C}\right)_{t},\| \|_{t}\right)$ at $t=0$.
This is very much related to the continuity of each $\left\|s_{i, t}\right\|_{t}$ at $t=0$
(after an appropriate normalization).

Let $s \in H^{0}\left(X, m K_{X / C}\right)$. Consider $k=k_{s}$ the minimum k s.t. $s_{0} \in W_{H, k}$.

$$
\underline{s}=\frac{s}{L_{k}^{1 / p}}, \quad L_{k}\left(=L_{k}(t)\right)=\frac{(2 \pi)^{k}}{k!}\left(-\log |t|^{2}\right)^{k} \quad \text { for } t \neq 0, \text { or on } X \backslash X_{0} .
$$

We may call \underline{s} a normalization of s. We put

$$
\underline{s}_{0}:=\operatorname{Res}_{k} s_{0} \in H^{0}\left(F^{[k]}, m K_{F^{[k]}}\right) .
$$

Then, Proposition 4.1 and 4.2 conclude

Cor. 4.3. $\exists \delta>0, \exists A_{s}>0$ depending only on the " C^{0}-norm" of s on a neighborhood of $X_{0}=F$ s.t. for $\forall t \in C, 0<|t|<\delta$,

$$
\left|\left\|\underline{s}_{t}\right\|_{t}^{p}-\left\|\underline{s}_{0}\right\|_{0}^{p}\right| \leq A_{s}(-\log |t|)^{-1} \quad(\rightarrow 0 \text { as } t \rightarrow 0)
$$

holds. There is also a uniform version.
We actually need a uniform continuity to conclude the continuity of L^{p}-spaces $\left(f_{*}\left(m K_{X / C}\right)_{t},\| \|_{t}\right)$ at $t=0$.

Cor. 4.4. Convergence as currents. (the minimum k s.t. $s_{0} \in W_{H, k}$)
The family of distributions $\left\{\sigma_{t}\right\}_{t \in C \backslash 0}$ on X given by

$$
\sigma_{t}: C_{\mathrm{cpt}}^{0}(X, \mathbb{C}) \ni \varphi \mapsto \int_{X_{t}} \varphi\left|\underline{s}_{t}\right|^{p}
$$

converges to a Dirac type distribution

$$
\sigma_{0}: \varphi \mapsto \int_{F^{[k]}}\left(a_{k}^{*} \varphi\right)\left|\operatorname{Res}_{k} s_{0}\right|^{p}
$$

on X supported on $a_{k}\left(F^{[k]}\right)$.

Prop. 4.5. Asymptotic orthogonality.

$$
\begin{aligned}
& \text { Let } s^{(k)} \in H^{0}\left(X, m K_{X / C}\right) \text { s.t.s } s_{0}^{(k)} \in W_{H, k} \backslash W_{H, k-1}, \\
& s^{(\ell)} \in H^{0}\left(X, m K_{X / C}\right) \text { s.t.s } s_{0}^{(\ell)} \in W_{H, \ell} \backslash W_{H, \ell-1} \text {. Suppose } k \neq \ell .
\end{aligned}
$$

Then, as $t \rightarrow 0$, we have

$$
\left\|\underline{s}_{t}^{(k)}+\underline{s}_{t}^{(\ell)}\right\|_{t}^{p}=\left\|\underline{s}_{t}^{(k)}\right\|_{t}^{p}+\left\|\underline{s}_{t}^{(\ell)}\right\|_{t}^{p}+O\left((-\log |t|)^{-1 / m}\right)
$$

There is also a uniform version.
Proof. By Cor 4.4, $\quad \operatorname{Supp} \sigma_{0}^{(k)}=a_{k}\left(F^{[k]}\right), \quad \operatorname{Supp} \sigma_{0}^{(k+1)}=a_{k+1}\left(F^{[k+1]}\right)$.

$$
\sigma_{0}^{(k)}=0 \quad \text { along } a_{k+1}\left(F^{[k+1]}\right)
$$

by definition of k : the minimum s.t. $s_{0} \in W_{H, k} . \quad \square$
This is a key property in various situations, e.g. the Mumford goodness of the canonical L^{2}-metric g on $f_{*}\left(K_{X / Y} \otimes L\right)$.

