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Plan of the lecture
Based on joint works

• D. J. Calderbank, A., arXiv:1810.10618.

• D. J. Calderbank, E. Legendre, A., arXiv:2012.08628

• S. Jubert, A. Lahdili, A., arXiv:2104.09709

• Extremal Sasaki structures via weighted extremal Kähler
metrics

• The weighted Calabi problem and weighted K-stability

• Discussion of proofs

• Applications
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is a
blend of three conditions:

(1) a 2n-dimensional distribution D ⊂ TN with a point-wise
complex structure Jx : Dx → Dx such that

[D1,0,D1,0] ⊂ D1,0,

(D, J) is called a CR structure on N.
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is:

(1) (D, J) a CR structure;

(2) (D, J) is strictly pseudo-convex, i.e. its Levi form

LD : ∧2D∗ → TN/D, LD(X ,Y ) = −[X ,Y ] mod D

is a strictly definite (1, 1)-form on (D, J).
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is:

(1) (D, J) a CR structure;

(2) s.t. (D, J) is strictly pseudo-convex;

(3) a Sasaki–Reeb vector field ξ ∈ C∞(N,TN). i.e.

LξD ⊂ D, LξJ = 0,

[ξ] ∈ C∞(N,TN/D) does not vanish, ωξ := LD/[ξ] > 0.

(ξ,D, J)⇔ (D, J, ωξ, gξ) a ξ-transversal Kähler structure on N.
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Regular Sasaki structures

A basic example

(M, g , J, ω) a (compact) Hodge Kähler manifold:

• ∃ L→ (M, J) ample and h hermitian metric on L with
ω = iRh.

• ∃ principle S1-bundle p : N → M with a connection 1-form η
such that p∗ω = dη [N = {` ∈ L∗ | h∗(`, `) = 1}].
• TN = R · χ⊕η D where χ ∈ C∞(N,TN) is the generator of

the S1-action ⇒ lift J and ω to D

• (χ,D, J) is a regular Sasaki structure on N with ωχ the lifted
Kähler structure ω from M.
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General Principle/Slogan

The regular Sasaki construction holds locally, around
each point x ∈ N, and allows one to extend geometric
notions from the space of local orbits (Mξ, Jξ, ωξ) of
the flow of ξ (irrespective of the regularity of ξ) to
corresponding notions on (ξ,D, J).
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Geometric notions on Sasaki manifolds

Definition (Boyer–Galicki–Simanca)

A Sasaki structure (ξ,D, J) on N is

• Sasaki–Einstein if (Mξ, Jξ, ωξ) is Kähler-Einstein;

• CSC if the scalar curvature Scalξ of (Mξ, Jξ, ωξ) is constant;

• extremal if (Mξ, Jξ, ωξ) is extremal, i.e. gradωξ(Scalωξ) is
Killing.
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Why bother?

Facts
• (Kobayashi) if (M, J, ω) KE Fano (L = K ∗M) K×M := KM \ OM

has structure of an affine variety in CN , with an isolated
singularity at 0, which admits a Calabi–Yau “cone” Kähler
metric.

• (Martelli–Sparks–Yau) More generally (irregular) positive
Sasaki–Einstein structures give rise to CY affine cones.

• (Collins–Szekelyhidi) positive CSC Sasaki structures give rise
to scalar-flat Kähler metrics on affine cones and ∃
obstructions.
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Sasaki–Reeb fields versus Killing potentials

Consider (N, χ,D, J)→ (M, J, g , ω) regular and suppose (ξ,D, J)
is another Sasaki structure with [ξ, χ] = 0.

[ξ] = f [χ] ∈ TN/D, f ∈ C∞(N)χ, f > 0.

Lemma 1
• f descends to a positive function on M such that
ξ̌ := J gradg f is a Killing vector field.

• any positive Killing potential f > 0 on (M, J, g , ω) defines a
Sasaki structure on (N,D, J) by

ξ := f χ− (ωχ)−1(df )D.
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Extremal Sasaki versus weighed extremal Kähler

(N, χ,D, J)→ (M, J, g , ω) regular Sasaki; (ξ,D, J) Sasaki with
[ξ, χ] = 0; f := fξ > 0 the Killing potential (Lemma 1):

Lemma 2 (Calderbank–A.; Jubert–Lahdili–A.)

• (ξ,D, J) is extremal Sasaki iff

Scal f (g) := f 2Scal(g)−2(n+ 1)f ∆g f − (n+ 2)(n+ 1)|∇g f |2g

is a Killing potential (Scalf -extremal).

• (ξ,D, J) is CSC iff Scal f (g) = cf , c ∈ R.

• (ξ,D, J) is Sasaki–Einstein iff Ric(g)−λω = − (n+2)
2 ddc log f .
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Proof of Lemma 2

TN = R · χ⊕D = R · ξ ⊕D;

(ηχ)D = 0, ηχ(χ) = 1, (ηξ)D = 0, ηξ(ξ) = 1.

• the contact 1-forms ηξ and ηχ satisfy ηξ = 1
f η

χ (as
[ξ] = f [χ] ∈ TN/D) ⇒ ωξ = (dηξ)D = 1

f (ωχ)D (conformal
pseudo-Hermitian structure of (D, J)).

• Scal(gξ) of (ξ,D, J) ⇔ Tanaka–Webster scalar curvature of
(ηξ,D, J) (conformal transformation of Tanaka–Webster
curvature, see e.g. Jerison–Lee)

Scal(gξ) = f Scal(gχ)− 2(n + 1)∆gχf −
(n + 2)(n + 1)

f
|df |2gχ

=
1

f
Scal f (gχ).
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Proof of Lemma 2

Scal(gξ) =
1

f
Scal f (gχ), (∗)

• Scal(gξ) = c ⇔ Scal f (g) = cf ;

• Scal(gξ) Killing potential for gξ (Lemma 1) iff the following
vector field is CR

V := Scal(gξ)ξ − ω−1
ξ (dScal(gξ))

D
.

Using (∗), ξ = f χ− ω−1
χ (dfD) and ωξ = 1

f ωχ:

V = Scal f (gχ)χ− ω−1
χ (dScal f (gχ))D.
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Calabi problem

Problem (Calabi problem)

Given (M, J, ω0), find a deformation

Kω0(M, J) = {ωϕ = ω0 + ddcϕ > 0, ϕ ∈ C∞(M)}

within the cohomology class [ω] ∈ H2
dR(M) such that

(gϕ, ωϕ) is extremal Kähler, i.e. J gradgϕ(Scal(gϕ)) is
Killing.
Scal(gϕ) = const is the CSC problem and

Ric(gϕ) =
Scal(gϕ)

2n ωϕ is the Kähler–Einstein problem.
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A weighted Calabi problem

• (N,D, J, χ)
p→ (M, J, ω0) regular Sasaki;

• (ξ,D, J) another Sasaki structure with [ξ, χ] = 0;

• T ⊂ Autr (M, J) generated by ξ̌ := J gradg f .

Kω0(M, J)T = {ωϕ = ω0 + ddcϕ > 0, ϕ ∈ (C∞(M))T}

ωϕ defines a new connection 1-form

ηϕ = η0 + p∗(dcϕ)

and Sasaki structure (N, χ,Dϕ, Jϕ) on N.
Fact: (ξ,Dϕ, Jϕ) Sasaki with induced Killing potential

fϕ = ηϕ(ξ) = f + (dcϕ)(ξ̌).
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A weighted Calabi problem
(Calderbank–Legendre–A.)

Existence of extremal Sasaki structure with Reeb field ξ on
p : N → M ⇔

Problem (The weighted Calabi problem)

Find ωϕ ∈ Kω0(M, J)T s.t.

Scal fϕ(gϕ) =f 2
ϕScal(gϕ)− 2(n + 1)fϕ∆gϕfϕ

− (n + 2)(n + 1)|dfϕ|2gϕ

is a Killing potential, where fϕ := f + dcϕ(ξ̌) is the
Killing potential of ξ̌ ∈ Lie(T) with respect to gϕ.
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Other weighted cscK problems
(after Lahdili)

More general setting: T-invariant (M, J, ω0), T ⊂ Autr (M, J),
ωϕ ∈ Kω0(M, J)T:

mϕ := m0 + dcϕ, mϕ(M) = m0(M) = P ⊂ (Lie(T))∗,

be the normalized momentum maps and v(x),w(x) be smooth
functions (with v(x) > 0). Then we introduce

Scalv (gϕ) := v(mϕ)Scal(gϕ) + 2∆gϕv(mϕ) +
∑̀
i ,j=1

v,ij(mϕ)gϕ(ξi , ξj)

and study the PDE for ϕ ∈ Kω0(M, J)T:

Scalv (gϕ) = w(mϕ). (∗∗)
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Other weighted cscK problems
(after Lahdili)

Definition (Lahdlili)

A solution (gϕ, ωϕ) ∈ Kω0(M, J)T of

Scalv (gϕ) = w(mϕ), (∗∗)

where

Scalv (gϕ) := v(mϕ)Scal(gϕ) + 2∆gϕv(mϕ) +
∑̀
i ,j=1

v,ij(mϕ)gϕ(ξi , ξj)

and mϕ := mω + dcϕ is called a (v ,w)-cscK metric.



Plan of the lecture Sasaki geometry Extremal Sasaki / Weighted Extremal Kähler Weighted Calabi problem Weighted K-stability Sketched Proofs Applications

Other weighted cscK problems
(after Lahdili)

Examples ((v ,w)-cscK)

• v = 1,w = const ⇔ cscK;

• v = 1, w is affine-linear ⇔ Calabi extremal;

• v = (〈ξ̌, x〉+ c)−(n+1),w = `ext(x)(〈ξ̌, x〉+ c)−(n+3) with `ext
affine-linear ⇔ weighted extremal Sasaki.

• v = e〈ξ̌,x〉,w = (〈ξ̌, x〉+ a)e〈ξ̌,x〉 ⇔ µ-cscK (E. Inoue).

Remarks
For all these examples w(x) = `ext(x)w0(x) where `ext(x) is
affine-linear and w0 > 0: (v ,w)-extremal Kähler.
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Other weighted cscK problems
(after Han–Li, Berman–Witt-Nystrom)

Definition (Han–Li)

Suppose (M, J) is Fano and ω ∈ 2πc1(M). A v-soliton is
(gϕ, ωϕ) ∈ Kω0(M, J)T such that

Ric(gϕ)− ωϕ =
1

2
ddc log v(mϕ).

Examples

• v(x) = e〈ξ̌,x〉 ⇔ Kähler–Ricci soliton (Tian–Zhu);

• v(x) =
(
〈ξ̌, x〉+ c

)−(n+2) ⇔ Sasaki–Einstein structure
(ξ,D, J) on p : N → M.

• v -soliton ⇔ M Fano and (v , ṽ)-cscK with

ṽ = 2
(
n +

∑r
i=1

v,i (x)xi
v(x)

)
v(x).
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Summary

Main Conclusion

• extremal Sasaki ⊂ (v ,w)-extremal Kähler
manifolds/orbifolds.

• Sasaki–Einstein ⊂ v -solitons on Fano
manifolds/orbifolds.
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Weighted K-stability
(following Dervan–Ross, Sjöström-Dyrefelt, Lahdili)

Definition (Equivariant test configurations)

Let (M, ω,T) be a T-invariant Kähler n-mfd. A smooth
T-equivariant Kähler test configuration is a Kähler (n + 1)-mfd
(M ,Ω), endowed with an isometric action of T and an additional
holomorphic C∗-action ρ, such that

• ∃ π : M � P1 (equivariant with respect to ρ and ρ0 on P1);

• T preserves (Mx := π−1(x), ωx := Ω|Mx
) and for x 6= 0 ∈ P1,

(Mx , [ωx ]) is T-equivariant isomorphic to (M, [ω]);

• M \M0
∼= (P \ {0})×M (C∗ × TC-equivariantly).
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Weighted K-stability
(following Lahdili)

Definition ((v ,w)-weighted Donaldson–Futaki invariant)

Let (M ,Ω,T) be a T-equivariant smooth test configuration of
(M, ω,T). The (v ,w)-weighted Donaldson–Futaki invariant is

DFv ,w (M ,Ω) :=−
∫

M
(Scalv (Ω)− w(mΩ))

Ωn+1

(n + 1)!

+ (8π)

∫
M
v(mω)

ωn

n!
.

Does not depend on the choice Ω ∈ [Ω] and ω ∈ [ω]!

For v = 1,w = s := n c1(M)·[ω]n−1

[ω]n (Odaka, Wang):

DF1,s(M ,Ω) = C

(
s

n + 1
[Ω]n+1 + KM /P1 · [Ω]n

)
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Weighted K-stability

Theorem (Lahdili-2019, weighted K-semistability)

Suppose (M, ω,T) admits a T-invariant (v ,w)-extremal Kähler
metric ωe ∈ [ω] and T ⊂ Autr (M) is maximal. Then, for any
T-equivariant smooth test configuration (M ,Ω) with reduced
central fibre M0:

DFv ,w (M ,Ω) ≥ 0.

Main Theorem (Jubert-Lahdili-A., weighted K-polystability)

Suppose, moreover, DFv ,w (M ,Ω) = 0. Then
M \M∞ ∼= M × (P1 \ {∞}) (product test
configuration).
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Weighted K-stability

Remarks
• v = 1,w = s (cscK metrics) proved by Berman–Darvas–Lu

and Sjöström-Dyrefeld;

• extremal Sasaki case (for projective test configurations) by
Calderbank–Legendre–A. using He–Li .

• v -solitons: stronger iff result by Han–Li.
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Sketch of the proof
(Tian’s properness principle)

Uses Lahdili’s version of weighted Mabuchi energy

Mv ,w : Kω0(M, J)T → R, Mv ,w (ω0) = 0,

(dϕMv ,w )(ϕ̇) = −
∫
M
ϕ̇
(

Scalv (gϕ)− w(mϕ)
)
ωn
ϕ.

• v = 1,w = s: M1,s is the Mabuchi energy;

• (Lahdili) (v ,w)-extremal ⇒ global minimum of Mv ,w ;

• (Lahdili) (M ,Ω,T) ⇒ a ray ωτ := Ω|Mx
in Kω0(M, J)T

(x := e(−τ+
√
−1θ) ∈ C∗ ⊂ P1); if M0 is reduced

lim
τ→∞

Mv ,w (ωτ )

τ
= DFv ,w (M ,Ω).

• Mv ,w bounded below ⇒ DFv ,w (M ,Ω) ≥ 0.
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Sketch of the proof
Tian’s properness principle

To further improve, we consider properness:

Definition (Tian, Darvas–Rubinstein)

G ⊂ Autr (M, J) reductive. Mv ,w is G-coercive if ∃ λ, δ > 0:

Mv ,w (ωϕ) ≥ λ inf
g∈G

J(g∗ωϕ)− δ, ∀ωϕ ∈ Kω0(M, J)T,

where J is a certain “norm” (called J-functional) on
Kω0(M, J) ⊂ C∞(M)/R.

Theorem (Tian, Berman–Darvas–Lu, Dervan–Dyrefelt,
Hisamoto, Chi Li)

Suppose G = TC with T a maximal torus in Autr (M, J) and Mv ,w

is G-coercive. Then DFv ,w (M ,Ω) = 0 iff M is a product test
configuration.



Plan of the lecture Sasaki geometry Extremal Sasaki / Weighted Extremal Kähler Weighted Calabi problem Weighted K-stability Sketched Proofs Applications

Sketch of the proof
Tian’s properness principle

To further improve, we consider properness:

Definition (Tian, Darvas–Rubinstein)

G ⊂ Autr (M, J) reductive. Mv ,w is G-coercive if ∃ λ, δ > 0:

Mv ,w (ωϕ) ≥ λ inf
g∈G

J(g∗ωϕ)− δ, ∀ωϕ ∈ Kω0(M, J)T,

where J is a certain “norm” (called J-functional) on
Kω0(M, J) ⊂ C∞(M)/R.

Theorem (Tian, Berman–Darvas–Lu, Dervan–Dyrefelt,
Hisamoto, Chi Li)

Suppose G = TC with T a maximal torus in Autr (M, J) and Mv ,w

is G-coercive. Then DFv ,w (M ,Ω) = 0 iff M is a product test
configuration.



Plan of the lecture Sasaki geometry Extremal Sasaki / Weighted Extremal Kähler Weighted Calabi problem Weighted K-stability Sketched Proofs Applications

Sketch of the proof

Main argument is to show (v ,w)-extremal ⇒ Mv ,w is TC-coercive.

• (Darvas–Rubinstein) axiomatic approach to

∃ critical point of M ⇒ M is G-coercive.

In our case, need to

• Extend Mv ,w to the metric completion E1
ω(M, J)T of

Kω0(M, J)T w.r.t. d1(ϕ0, ϕ2) = infϕ(t)

∫ 1
0 |ϕ̇(t)|(ωϕ(t))n.

• Show weak compactness of Mv ,w .

• (Lahdili) Mv ,w is convex along C 1,1̄-geodesics in E1
ω(M, J)T

(uses adaptation of Berman–Berndtsson);

• Show G = TC acts transitively on the set of minima on Mv ,w

(uses adaptation of Berman–Darvas–Lu);
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The key argument

Define the greatest LSC extension of Mv ,w to E1
ω(M, J)T.

Mv ,w (ωϕ) =

∫
M

log

(
ωn
ϕ

ωn

)
v(mϕ)ωn

ϕ − 2I
Ric(ω)
v (ϕ) + Iw (ϕ),

(dϕIw )(ϕ̇) :=

∫
M
ϕ̇w(mϕ)ωn

ϕ

(dϕI
Ric(ω)
v )(ϕ̇) := n

∫
M
ϕ̇
(
v(mϕ)Ric(ω) ∧ ωϕ + 〈dv(mϕ),mRic(ω)〉

)
ωn
ϕ.

mϕ = mω + dcϕ.
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log

(
ωn
ϕ

ωn

)
v(mϕ)ωn

ϕ−2I
Ric(ω)
v (ϕ) + Iw (ϕ)︸ ︷︷ ︸
uniform continious

,

(dϕIw )(ϕ̇) :=

∫
M
ϕ̇w(mϕ)ωn

ϕ

(dϕI
Ric(ω)
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The key argument
(after Han-Li, see also Donaldson)

Uses idea from a recent work of Han–Li on v -solitons:

• v -soliton (M is Fano) ⇔ (v , ṽ)-cscK with

ṽ = 2

(
n +

r∑
i=1

v,i (x)xi
v(x)

)
v(x),

and MHL
v = DHL

v + C = Mv ,ṽ + C1.
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The key argument
(after Han-Li, see also Donaldson)

• P → B := B1 × · · · × Bk principal T-bundle over cscK
(Bi , ωBi

);

• θ ∈ Ω1(P, t) connection: dθ =
∑k

j=1 ωBj
⊗ pj , pj ∈ t.

• π : Y := X ×T P → B a principal X -bundle.

• bundle-like metrics on Y :

ωY
ϕ = ωX

ϕ +
n∑

j=1

(〈pj ,mϕ〉+ cj)π
∗ωBj

+ 〈dmϕ ∧ θ〉.

Lemma 3 (Jubert–Lahdili–A.)

• Scal(gY
ϕ ) = Scalp(gX

ϕ ) + q(mϕ) with

p(x) :=
∏d

j=1(〈pj , x〉+ cj)
dim(Bj ) and q(x) := · · · .

• MY
1,s̄(ωY

ϕ ) = CMX
p,w (ωX

ϕ ).
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An application to Sasaki geometry

Corollary (Jubert-Lahdili-A. + Han-Li)

Suppose X ↪→ Y → B Fano with X toric Fano. Then
K×Y admits a Calabi–Yau cone metric.

Uses: gY
ϕ is a v -soliton on Y iff gX

ϕ is a pv -soliton on X .

Remarks
Extends a result by Futaki–Ono–Wang from toric Fano to principle
toric Fano fibrations and Mabuchi’s result from P1-bundles to more
general fibrations.

THANK YOU !
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