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Plan of the lecture
Based on joint works
® D. J. Calderbank, A., arXiv:1810.10618.
® D. J. Calderbank, E. Legendre, A., arXiv:2012.08628
® S Jubert, A. Lahdili, A., arXiv:2104.09709

Extremal Sasaki structures via weighted extremal Kahler
metrics

The weighted Calabi problem and weighted K-stability

Discussion of proofs

Applications
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is a
blend of three conditions:
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is a
blend of three conditions:

(1) a 2n-dimensional distribution D C TN with a point-wise
complex structure Jy : Dy — Dy such that

[DI,O Dl,O] c @1,0

(D, J) is called a CR structure on N.
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Sasaki structures

Definition (Sasaki structure)
A Sasaki structure on a (connected) (2n + 1)-manifold N is:
(1) (D,J) a CR structure;

(2) (D, J) is strictly pseudo-convex, i.e. its Levi form
Lp: A’D* = TN/D,  Lp(X,Y)=—[X,¥Y] mod D

is a strictly definite (1, 1)-form on (D, J).
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is:
(1) (D,J) a CR structure;

(2) s.t. (D, J) is strictly pseudo-convex;

(3) a Sasaki—Reeb vector field £ € C*(N, TN). i.e.

ﬁgD cD, ﬁgJ =0,

[6] € C¥(N, TN/D) does not vanish,  we := Ly /[¢] > 0.
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Sasaki structures

Definition (Sasaki structure)

A Sasaki structure on a (connected) (2n + 1)-manifold N is:
(1) (D,J) a CR structure;

(2) s.t. (D, J) is strictly pseudo-convex;

(3) a Sasaki—Reeb vector field £ € C*(N, TN). i.e.

ﬁgD cD, ﬁg./ =0,

[€] € C*°(N, TN/D) does not vanish, we = Lp/[€] > 0.
(&,D,J) & (D, J,we, g¢) a &-transversal Kahler structure on N.
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Regular Sasaki structures

A basic example
(M, g,J,w) a (compact) Hodge Kahler manifold:
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Regular Sasaki structures

A basic example
(M, g,J,w) a (compact) Hodge Kahler manifold:

e 3L — (M,J) ample and h hermitian metric on L with
w = iR
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Regular Sasaki structures

A basic example
(M, g,J,w) a (compact) Hodge Kahler manifold:
e 3L — (M,J) ample and h hermitian metric on L with
w = iR
® 3 principle S'-bundle p: N — M with a connection 1-form 7
such that p*w =dn [N = {¢ € L* | h*(¢,¢) = 1}].
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Regular Sasaki structures

A basic example
(M, g,J,w) a (compact) Hodge Kahler manifold:
e 3L — (M,J) ample and h hermitian metric on L with
w = iR".
® 3 principle S'-bundle p: N — M with a connection 1-form 7
such that p*w =dn [N = {¢ € L* | h*(¢,¢) = 1}].
®* TN =R-x @, D where x € C®°(N, TN) is the generator of
the St-action = lift J and w to D



Plan of the lecture Sasaki geometry t xtremal Sasaki / Weighted Extremal Kahler Weig hL d Calabi problem \\ ig ht >d K-stability
o 0000000 0oC 00000000

Regular Sasaki structures

A basic example
(M, g,J,w) a (compact) Hodge Kahler manifold:
e 3L — (M,J) ample and h hermitian metric on L with
w = iR".
® 3 principle S'-bundle p: N — M with a connection 1-form 7
such that p*w =dn [N = {¢ € L* | h*(¢,¢) = 1}].

®* TN =R-x @, D where x € C®°(N, TN) is the generator of
the St-action = lift J and w to D

® (x,D,J) is a regular Sasaki structure on N with w, the lifted
Kahler structure w from M.
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General Principle/Slogan

The regular Sasaki construction holds locally, around
each point x € N, and allows one to extend geometric

notions from the space of local orbits (Mg, Jg, we) of
the flow of £ (irrespective of the regularity of £) to
corresponding notions on (&, D, J).
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Geometric notions on Sasaki manifolds

Definition (Boyer—Galicki-Simanca)
A Sasaki structure (£,D,J) on N is
® Sasaki-Einstein if (M, J¢,we) is Kahler-Einstein;
® CSC if the scalar curvature Scalg of (Mg, Jg,we) is constant;

e extremal if (Mg, Jg, we) is extremal, i.e. grad,, (Scals,) is
Killing.
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Why bother?

Facts
* (Kobayashi) if (M, J,w) KE Fano (L = Ky;) Ky :== Kn \ Om
has structure of an affine variety in CV, with an isolated
singularity at 0, which admits a Calabi—Yau “cone” Kahler
metric.
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Why bother?

Facts
* (Kobayashi) if (M, J,w) KE Fano (L = Ky;) Ky :== Kn \ Om
has structure of an affine variety in CV, with an isolated
singularity at 0, which admits a Calabi—Yau “cone” Kahler
metric.
¢ (Martelli-Sparks—Yau) More generally (irregular) positive
Sasaki—Einstein structures give rise to CY affine cones.
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Why bother?

Facts

* (Kobayashi) if (M, J,w) KE Fano (L = Ky;) Ky :== Kn \ Om
has structure of an affine variety in CV, with an isolated
singularity at 0, which admits a Calabi—Yau “cone” Kahler
metric.

¢ (Martelli-Sparks—Yau) More generally (irregular) positive
Sasaki—Einstein structures give rise to CY affine cones.

¢ (Collins—Szekelyhidi) positive CSC Sasaki structures give rise
to scalar-flat Kahler metrics on affine cones and 3
obstructions.



Plan of the lecture Sasaki geometry Extremal Sasaki / Weighted Extremal K3hler Weighted Calabi problem Weighted K-stability
o] 0000000 @000 00000000 0000

Sasaki—Reeb fields versus Killing potentials

Consider (N, x,D,J) — (M, J, g,w) regular and suppose (£, D, J)
is another Sasaki structure with [¢, x] = 0.
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Sasaki—Reeb fields versus Killing potentials

Consider (N, x,D,J) — (M, J, g,w) regular and suppose (£, D, J)
is another Sasaki structure with [¢, x] = 0.

(€] =f[x] € TN/D, f e C®°(N)X, f>0.
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Sasaki—Reeb fields versus Killing potentials

Consider (N, x,D,J) — (M, J, g,w) regular and suppose (£, D, J)
is another Sasaki structure with [¢, x] = 0.

(€] =f[x] € TN/D, f e C®°(N)X, f>0.

Lemma 1

® f{ descends to a positive function on M such that
§ = Jgrad, f is a Killing vector field.

® any positive Killing potential £ > 0 on (M, J, g,w) defines a
Sasaki structure on (N, D, J) by

€= fx — (wy) ' (dF)p.
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Extremal Sasaki versus weighed extremal Kahler

(N,x,D,J) — (M, J, g,w) regular Sasaki; (£, D, J) Sasaki with
[€,x] =0; f :=fe > 0 the Killing potential (Lemma 1):

Lemma 2 (Calderbank-A.; Jubert-Lahdili-A.)
® (£,D,)) is extremal Sasaki iff

Scalf(g) := f*Scal(g) — 2(n+1)f Agf — (n+2)(n+1)|VEf|Z

is a Killing potential (Scalf-extremal).
® (&,D,J)is CSCiff Scalf(g) = cf, c € R.
® (£,D,J) is Sasaki—Einstein iff Ric(g) — A\w = —@ddc log f.
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Proof of Lemma 2

TN=R-x®D=R-{®D;
(M) =0, 7X(x) =1,  (1%)p =0,75(¢) = 1.
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Proof of Lemma 2

TN=R-x&D=R-£aD;
(M) =0, 7X(x) =1,  (1%)p =0,75(¢) = 1.

e the contact 1-forms ¢ and nX satisfy 7¢ = %nx (as
€] = f[x] € TN/D)
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Proof of Lemma 2

TN=R-x&D=R-£aD;
(M) =0, 7X(x) =1,  (1%)p =0,75(¢) = 1.

® the contact 1-forms 7¢ and nX satisfy ¢ = %nx (as
€] =fIx] € TN/D) = we = (dn®)p = %(wx)@ (conformal
pseudo-Hermitian structure of (D, J)).
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Proof of Lemma 2

TN=R-y®@D=R-£@®D:
M) =0,7*(x) =1,  (n°)p=0,7%(&) =1.

e the contact 1-forms ¢ and nX satisfy 7¢ = %nX (as
€] =fIx] € TN/D) = we = (dn®)p = %(wx)@ (conformal
pseudo-Hermitian structure of (D, J)).

® Scal(ge) of (£, D, J) < Tanaka—Webster scalar curvature of

(n¢, D, J) (conformal transformation of Tanaka—Webster
curvature, see e.g. Jerison—Lee)

(n+2)(n+1)

Scal(g¢) = fScal(gy) —2(n+1)Ag f — .

\df@x

1
= ?5ca/f(gx).
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Proof of Lemma 2

Seallge) = ;Scalr(g),  (+)

® Scal(g¢) = ¢ & Scalf(g) = cf;
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Proof of Lemma 2

Scal(ge) = %Scalf(gx), (%)

® Scal(g¢) = ¢ & Scalf(g) = cf;

® Scal(g¢) Killing potential for g¢ (Lemma 1) iff the following
vector field is CR

V := Scal(ge)¢ — wg ' (dScal(ge))y -
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Proof of Lemma 2

Scal(ge) = %5calf(gx), (%)

® Scal(g¢) = ¢ & Scalf(g) = cf;

® Scal(g¢) Killing potential for g¢ (Lemma 1) iff the following
vector field is CR

V := Scal(ge)¢ — wg ' (dScal(ge))y -
Using (%), £ = fx —w; *(dfp) and we = Twy:

V' = Scalf(gy)x — wy "(dScalf(gy))p-
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Calabi problem

Problem (Calabi problem)

Given (M, J,wp), find a deformation
Kuo(M, J) = {wy, = wo + ddp > 0, ¢ € C*(M)}

within the cohomology class [w] € H3p(M) such that
g (S ( 79)) s

(84, wy) is extremal Kahler, i.e. Jgrad
Killing.
Scal(g,) = const is the CSC problem and

Ric(g,) = 2N&e) . is the K&hler—Einstein problem.



Plan of the lecture Sasaki geometry Extremal Sasaki / Weighted Extremal Kahler Weighted Calabi problem Weighted K-stability
o] 0000000 0000 0@000000 0000

A weighted Calabi problem

e (N,D,J,x) LN (M, J,wo) regular Sasaki;
® (¢,D,J) another Sasaki structure with [£, x] = 0;
e T C Aut,(M, J) generated by £ := Jgrad, f.
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A weighted Calabi problem

e (N,D,J,x) LN (M, J,wo) regular Sasaki;

® (&£,D,J) another Sasaki structure with [£, x] = 0;

e T C Aut,(M, J) generated by £ := Jgrad, f.
Kuo(M, )T = {w, = wo + ddp > 0, ¢ € (C(M))"}

w,, defines a new connection 1-form

Ne = 1o + p*(dp)

and Sasaki structure (N, x, D, J,) on N.
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A welghted Calabi problem

e (N,D,J,x) LN (M, J,wo) regular Sasaki;

® (&£,D,J) another Sasaki structure with [£, x] = 0;

e T C Aut,(M, J) generated by £ := Jgrad, f.
Kuo(M, )T = {w, = wo + ddp > 0, ¢ € (C(M))"}

w,, defines a new connection 1-form

Ne = 1o + p*(dp)

and Sasaki structure (N, x, D, J,) on N.
Fact: (¢,D,, J,) Sasaki with induced Killing potential

fo = 10(6) = f + (d°0)(E).
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A weighted Calabi problem
(Calderbank—Legendre-A.)

Existence of extremal Sasaki structure with Reeb field £ on
p:N—->Ms

Problem (The weighted Calabi problem)

Find wy, € Ky, (M, )T

Scalt,(g,) :f?5ca/( 8p) — 2(n+ 1)f,Ag, f,
— (n+2)(n+1)|dfy|g,

is a Killing potential, where f, := f + d°p() is the
Killing potential of ¢ € Lie(T) with respect to 8-
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Other weighted cscK problems
(after Lahdili)
More general setting: T-invariant (M, J,wp), T C Aut.(M,J),
wy € KwO(I\/I,J)T:
my, := mo + dyp, my(M) = mg(M) = P C (Lie(T))",
be the normalized momentum maps and v(x), w(x) be smooth

functions (with v(x) > 0). Then we introduce

l
Scal,(g,) := v(m,)Scal(gy) +20g,v(my)+ Z v,ii(me)gs(Sis &)
ij=1

and study the PDE for ¢ € K,,,(M, J)":

Scal ,(g,) = w(my). (%)
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Other weighted cscK problems
(after Lahdili)

Definition (Lahdlili)
A solution (g, w,) € Kuy(M, J)T of

Scal,(g,) = w(m,), ()

where

¢

Scal,(g,) = v(my)Scal(gy) +20g,v(my) + Y | vii(my)gs(&i, &)
ij=1

and m, := m, + dyp is called a (v, w)-cscK metric.
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Other weighted cscK problems
(after Lahdili)

Examples ((v, w)-cscK)

® v=1 w = const < cscK;
e v =1, wis affine-linear & Calabi extremal;

® (<§7 > ) n+1) w = EGXt(X)“ga X> + C)_(n+3) With Eext
affme—lmear & we|ghted extremal Sasaki.

v =el) w = ((£ x) + a)el*) & p-cscK (E. Inoue).
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Other weighted cscK problems
(after Lahdili)

Examples ((v, w)-cscK)

® v=1 w = const < cscK;
e v =1, wis affine-linear & Calabi extremal;

® (<§v > ) n+1) w = EGXt(X)(@Ya X> + C)_(n+3) With Kext
affme—lmear & we|ghted extremal Sasaki.

v =el) w = ((£ x) + a)el™) & p-cscK (E. Inoue).

Remarks
For all these examples w(x) = lext(x)wo(x) where fexi(x) is
affine-linear and wy > 0: (v, w)-extremal Kahler.
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Other weighted cscK problems
(after Han-Li, Berman—Witt-Nystrom)
Definition (Han-Li)

Suppose (M, J) is Fano and w € 2wci(M). A v-soliton is
(8p,wy) € Kuy(M, NT such that

1
Ric(gy) — wy = Eddc log v(m,,).
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Other weighted cscK problems
(after Han-Li, Berman—Witt-Nystrom)
Definition (Han-Li)

Suppose (M, J) is Fano and w € 2wci(M). A v-soliton is
(8p,wy) € Kuy(M, NT such that

1
Ric(gy) — wy = Eddc log v(m,,).

Examples
* v(x) = el€%) & Kahler—Ricci soliton (Tian=Zhu);

* v(x) = ((&,x) + c)_(n+2) & Sasaki—Einstein structure
(& D,J)onp: N— M.
¢ v-soliton < M Fano and (v, V)-cscK with

V=2 (n +> V’\"/((i))x") v(x).
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Summary

Main Conclusion

extremal Sasaki C (v, w)-extremal Kahler
manifolds/orbifolds.

Sasaki—Einstein C v-solitons on Fano
manifolds/orbifolds.
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Welghted K-stability

(following Dervan—Ross, Sjostrom-Dyrefelt, Lahdili)

Definition (Equivariant test configurations)

Let (M,w,T) be a T-invariant Kahler n-mfd. A smooth
T-equivariant Kahler test configuration is a Kéhler (n + 1)-mfd
(A ,Q2), endowed with an isometric action of T and an additional
holomorphic C*-action p, such that

® 37 : .4 — P! (equivariant with respect to p and pg on P!);

o T preserves (My := 7 1(x), wy := €, ) and for x £ 0 € P,

(My, [wx]) is T-equivariant isomorphic to (M, [w]);
o M\ My=(P\{0}) x M (C* x Tc-equivariantly).
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Weighted K-stability
(following Lahdili)
Definition ((v, w)-weighted Donaldson—Futaki invariant)
Let (.#,9Q,T) be a T-equivariant smooth test configuration of
(M,w,T). The (v, w)-weighted Donaldson—Futaki invariant is
Qn+1

DF (. 9) = = | (Seal. (@) = wlma)) o,

n

4 (87r)/M v(m)“-.

n!

Does not depend on the choice Q € [Q] and w € [w]!
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Weighted K-stability
(following Lahdili)
Definition ((v, w)-weighted Donaldson—Futaki invariant)

Let (.#,9Q,T) be a T-equivariant smooth test configuration of
(M,w,T). The (v, w)-weighted Donaldson—Futaki invariant is

Qn+1
(n+1)!

DF,,, (4, 9) / (Scal, () — w(mg))

n

4 (87r)/M v(m)“-.

n!

Does not depend on the choice Q € [Q] and w € [w]!
Forv=1w=35s:= n%][f]ni1 (Odaka, Wang):

§ n n
DFlé(%, Q) - C <n—|—]_[Q] +1 + c%{///[pl . [Q] >
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Weighted K-stability

Theorem (Lahdili-2019, weighted K-semistability)

Suppose (M,w,T) admits a T-invariant (v, w)-extremal Kihler
metric we € [w] and T C Aut,(M) is maximal. Then, for any
T-equivariant smooth test configuration (.# ,Q) with reduced
central fibre My:

DF, . (#,Q) > 0.
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Weighted K-stability

Theorem (Lahdili-2019, weighted K-semistability)

Suppose (M,w, T) admits a T-invariant (v, w)-extremal Kahler
metric we € [w] and T C Aut,(M) is maximal. Then, for any
T-equivariant smooth test configuration (.4 ,2) with reduced
central fibre My:

DF, ., (.#,Q) > 0.

Main Theorem (Jubert-Lahdili-A., weighted K-polystability)
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Weighted K-stability

Remarks
® v=1w =75 (cscK metrics) proved by Berman—-Darvas—Lu
and Sjostrom-Dyrefeld;
e extremal Sasaki case (for projective test configurations) by
Calderbank—-Legendre—A. using He—Li .
® v-solitons: stronger iff result by Han—Li.
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Sketch of the proof

(Tian's properness principle)
Uses Lahdili’s version of weighted Mabuchi energy
My o Koo(M, )T =R, My (wo) =0,
(@M)(@) = = [ o(Seal. ) - wim,)) ol



Sketch of the proof

(Tian's properness principle)
Uses Lahdili’s version of weighted Mabuchi energy
My o Koo(M, )T =R, My (wo) =0,
(@M)(@) = = [ o(Seal. ) - wim,)) ol

® v=1w=s: My, is the Mabuchi energy;
¢ (Lahdili) (v, w)-extremal = global minimum of M, ,;
® (Lahdili) (.#,Q,T) = aray wy :=Q,, in Koo(M, )T
(x := e-TTV10) € C* ¢ PY); if My is reduced
MV w T
im Mvwler) _pe sq).
T—00 T
* M, ,, bounded below = DF, ,(.#,Q) > 0.
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Sketch of the proof
Tian's properness principle
To further improve, we consider properness:

Definition (Tian, Darvas—Rubinstein)
G C Aut,(M, J) reductive. M, ,, is G-coercive if 3 \,¢ > 0:

M, (wy) > A igEJ(g*%) — 4, Vw, € Ky (M, )T,
g

where J is a certain “norm” (called J-functional) on
Kuo(M,J) C C*(M)/R.
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Sketch of the proof
Tian's properness principle
To further improve, we consider properness:
Definition (Tian, Darvas—Rubinstein)
G C Aut,(M, J) reductive. M, ,, is G-coercive if 3 \,¢ > 0:

M, (wy) > A igEJ(g*%) — 4, Vw, € Ky (M, )T,
g

where J is a certain “norm” (called J-functional) on
Kuo(M,J) C C*(M)/R.

Theorem (Tian, Berman-Darvas-Lu, Dervan—-Dyrefelt,
Hisamoto, Chi Li)

Suppose G = T¢ with T a maximal torus in Aut,(M, J) and M, ,,
is G-coercive. Then DF, ,,(.#,Q) =0 iff # is a product test
configuration.
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Sketch of the proof

Main argument is to show (v, w)-extremal = M, ,, is T¢-coercive.
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Sketch of the proof

Main argument is to show (v, w)-extremal = M, ,, is T¢-coercive.

¢ (Darvas—Rubinstein) axiomatic approach to

3 critical point of M = M is G-coercive.

In our case, need to
® Extend M, ,, to the metric completion 51(/\/1 J)T of
Koo (M, DT wert. di(po, p2) = inf fo |o(t) )"
® Show weak compactness of M, ,,.
e (Lahdili) M,,,, is convex along ClI-geodesics in £1(M, J)T
(uses adaptation of Berman—Berndtsson);

® Show G = T¢ acts transitively on the set of minima on M, ,,
(uses adaptation of Berman—Darvas—Lu);



Plan of the lecture Sasaki geometry Extremal Sasaki / Weighted Extremal Kahler Weighted Calabi problem Weighted K-stability
o] 0000000 0000 00000000 0000

The key argument

Define the greatest LSC extension of M, ,, to EL(M, NT.

n

M) = [ tog () vimot = 256) 4 14t
(dh)($) = /M pw(m, )

(AN @) = [ o(vm Ric(e) Ay + (dvme). mien) )

my, = my, + dp.
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The key argument

Define the greatest LSC extension of M, ,, to £1(M, J)T.

w3 ic(w
My, w(wy) :/M log (cﬁ) v(m¢)wg —2|1\} ( )(go) + L (9),

uniform continious

(@A) = [ pwim, )

(d, i w))( ) = n/Mgb(v(mw)Ric(w) Awy + (dv(m,,), mRiC(w)))w;.

my, = my, + dp.
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The key argument

(after Han-Li, see also Donaldson)

Uses idea from a recent work of Han-Li on v-solitons:

e v-soliton (M is Fano) < (v, 7)-cscK with
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The key argument

(after Han-Li, see also Donaldson)
® P— B:=Bj x---x By principal T-bundle over cscK
(Bisws,);
6 € Q'(P,t) connection: df = Zj’le wg; ® pj, pj € t.
o 71:Y :=X xt P — B a principal X-bundle.

bundle-like metrics on Y:

wh =w} + Z((pj, my) + ¢)m we; + (dmy A 0).

j=1
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The key argument

(after Han-Li, see also Donaldson)
® P— B:=Bj x---x By principal T-bundle over cscK
(Bisws,);
6 € Q'(P,t) connection: df = Zj’le wg; ® pj, pj € t.
o 71:Y :=X xt P — B a principal X-bundle.

bundle-like metrics on Y:

wh =w} + Z((pj, my) + ¢)m we; + (dmy A 0).

j=1
Lemma 3 (Jubert-Lahdili-A.)
® Scal(g)) = Scaly(g) + q(m,) with
p(x) = [T (P %) + ) ™5 and g(x) := ---
° Mﬁg(wg) = CMﬁW(w;f).
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An application to Sasaki geometry

Corollary (Jubert-Lahdili-A. 4+ Han-Li)
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An application to Sasaki geometry

Corollary (Jubert-Lahdili-A. 4+ Han-Li)

Uses: gg is a v-soliton on Y iff gg is a pv-soliton on X.
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An application to Sasaki geometry

Corollary (Jubert-Lahdili-A. 4+ Han-Li)

Uses: gg is a v-soliton on Y iff gg is a pv-soliton on X.

Remarks

Extends a result by Futaki-Ono—Wang from toric Fano to principle
toric Fano fibrations and Mabuchi's result from P-bundles to more
general fibrations.
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An application to Sasaki geometry

Corollary (Jubert-Lahdili-A. 4+ Han-Li)

Uses: gg is a v-soliton on Y iff gg is a pv-soliton on X.

Remarks

Extends a result by Futaki-Ono—Wang from toric Fano to principle

toric Fano fibrations and Mabuchi’s result from P1-bundles to more
general fibrations.

THANK YOU !
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