Degeneration of Riemann surfaces and small eigenvalues of Laplacian

Ken-Ichi Yoshikawa joint work with X. Dai

Ken-Ichi Yoshikawa joint work with X. Dai Degeneration of Riemann surfaces and small e

Let us recall some classical theorems concerning small eigenvalues of Laplacian acting on functions on a compact Riemann surface.

Let M be a compact Riemann surface of genus g>1 endowed with a Riemannian metric.

Let C be the disjoint union of simple closed geodesics of M such that $M \setminus C$ consists of n+1 components. Let C_n be the set of all those C. For $C \in C_n$, write L(C) for the length of C. Set

$$\ell_n := \inf\{L(C); C \in \mathcal{C}_n\}.$$

$$0 = \lambda_0 < \lambda_1 \le \dots \le \lambda_n \le \dots$$

be the eigenvalues of the Laplacian acting on the functions on M.

Theorem (Schoen-Wolpert-Yau)

Let k > 0 be a constant. Assume that the Gauss curvature K satisfies

$$-1 \le K \le -k.$$

Then \exists positive constants $\alpha_1, \alpha_2 > 0$ depending only on g s.t.

$$\alpha_1 k^{3/2} \ell_n \le \lambda_n \le \alpha_2 \ell_n \qquad (1 \le n \le 2g - 3)$$
$$\alpha_1 k \le \lambda_{2g-2} \le \alpha_2.$$

Theorem (Mazur)

Let $f: X \to \Delta$ be a degenerating family of hyperbolic Riemann surfaces such that $X_0 = f^{-1}(0)$ is a stable curve. Let γ_s^{hyp} be the hyperbolic metric on the fiber $X_s = f^{-1}(s)$ with $K_s = -1$. Let $p \in X_0$ be a node such that f(z, w) = zw around p. Then \exists constants $C_1, C_2 > 0$ such that

$$C_1 \frac{dz d\bar{z}}{|z|^2 (\log|z|)^2} \le \gamma_s^{\text{hyp}} \le C_2 \frac{dz d\bar{z}}{|z|^2 (\log|z|)^2}$$

on the domain $\{(z,w) \in X_s; |z| < 1, |w| < 1\} \cong \{z \in \Delta; |s| < |z| < 1\}.$

The length of the pinched geodesic corresponding to $p \in \text{Sing } X_0$ behaves asymptotically like $1/\log(1/|s|)$. From this estimate and the Schoen-Wolpert-Yau theorem, for degenerations to stable curves, we have:

$$\lambda_i(s) \sim \frac{1}{\log(1/|s|)}$$
 (*i* < #{irreducible components of X₀}).

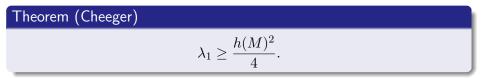
ヘロト 人間ト 人団ト 人団ト

Cheeger's inequality for the first eigenvalue

Recall that the Cheeger constant h(M) is defined as

$$h(M) := \inf_{M \setminus N = M_1 \cup M_2, \partial M_i = N} \frac{L(N)}{\min\{A(M_1), A(M_2)\}}.$$

Here N is a smooth curve of M such that $M \setminus N = M_1 \cup M_2$ consists of two components, L(N) is the length of N, $A(M_i)$ is the area of M_i .



For a degenerating family of hyperbolic Riemann surfaces to a stable curve,

$$\lambda_1(s) \ge \text{Const.} \left(\frac{1}{\log(1/|s|)}\right)^2.$$

(四) (ヨ) (ヨ)

X: compact Kähler surface S: compact Riemann surface $f\colon X\to S:$ surjective proper holomorphic map with connected fibers $\Delta\subset S:$ discriminant locus of $f\colon X\to S$ Set

$$S^o := S \setminus \Delta, \qquad X^o := X \setminus f^{-1}(\Delta), \qquad f^o := f|_{X^o}$$

Then $f^o \colon X^o \to S^o$ is a family of compact Riemann surfaces.

 γ : Kähler metric on X. Set $X_s:=f^{-1}(s),\,\gamma_s=\gamma|_{X_s},\,K_s$ the Gauss curvature of (X_s,γ_s) Since $\min_{X_s}K_s\to-\infty$ as $s\to 0\in\Delta$ and K_s can be positive at some point, the Schoen-Wolpert-Yau theorem does not apply at once to the degeneration $f\colon X\to S.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $\lambda_0(s) = 0 < \lambda_1(s) \le \lambda_2(s) \le \cdots$ be the eigenvalues of the Laplacian $\Box_s = \bar{\partial}^* \bar{\partial}$ acting on $C^{\infty}(X_s)$ with respect to the induced metric γ_s . For s = 0, regard \Box_0 as the Friedrichs extension of the Laplacian acting on the smooth functions on $X_{0, reg} = X_0 \setminus \operatorname{Sing} X_0$ with compact support.

Fact (Y.)

Assume that X_0 is reduced. Then, for each $k \in \mathbb{N}$, $\lambda_k(s)$ is a continuous function on S. Let

$$N := \#\{ \text{ irreducible components of } X_0 \}$$

Then

$$\lim_{s \to 0} \lambda_k(s) = 0 \qquad (k \le N - 1)$$

and $\lambda_k(s)$, $k \ge N$ is uniformly bounded below by a positive constant.

|田 | |田 | |田 |

Problem

Determine the asymptotic behavior of the small eigenvalues $\lambda_k(s)$ $(k \leq N-1)$ as $s \to 0.$

As for the first eigenvalue $\lambda_1(s)$, we have the following comparison from the mini-max principle. Let $\lambda_1^{\text{hyp}}(s)$ be the first eigenvalue of X_s with respect to the hyperbolic metric γ_s^{hyp} on X_s . To emphasis that γ_s is induced from the metric γ on X, write γ_s^{ind} for $\gamma_s = \gamma|_{X_s}$.

Comparison of the first eigenvalues

$$\lambda_1(s) = \lambda_1^{\operatorname{ind}}(s) \ge m(s) \,\lambda_1^{\operatorname{hyp}}(s)$$

where

$$m(s) := \min_{X_s} \frac{\gamma_s^{\text{hyp}}}{\gamma_s^{\text{ind}}}.$$

Case of degenerating family to a stable curve

When the family $f: X \to S$ is a degenerating family to a stable curve, due to Mazur's theorem, $\exists C > 0$ s.t. $m(s) \ge C > 0 \ \forall s \in S^o = S \setminus \Delta$. Hence

$$\lambda_1(s) \ge \text{Const.} \frac{1}{\log(1/|s|)}.$$

In this case, by making use of the mini-max principle, it is possible to prove

$$\lambda_{N-1}(s) \le \text{Const.} \frac{1}{\log(1/|s|)}.$$

Hence, for every degeneration to a stable curve, we get

Theorem (Schoen-Wolpert-Yau + Mazur + mini-max principle)
$$\frac{C_1}{\log(1/|s|)} \le \lambda_1(s) \le \dots \le \lambda_{N-1}(s) \le \frac{C_2}{\log(1/|s|)} \qquad (s \to 0).$$

Now, let us consider the case where X_0 is NOT a stable curve. By Cheeger's inequality, $\exists \alpha > 0$ such that

 $\lambda_1(s) \ge \text{Const.}|s|^{\alpha}.$

Since X_0 is not a stable curve, it can be possible that γ_s^{hyp} converges to 0 on some components of X_0 . There are examples such that m(s) satisfies

$$\exists \alpha > 0$$
 s.t. $m(s) = \inf_{X_s} (\gamma_s^{\text{hyp}} / \gamma_s^{\text{ind}}) \le C |s|^{\alpha}$

Hence if $f: X \to S$ is NOT a degeneration to a stable curve, the estimate for $\lambda_1(s)$ obtained from the Schoen-Wolpert-Yau theorem and the mini-max principle seems to be of the above type: $\exists \alpha > 0$ such that

 $\lambda_1(s) \ge \text{Const.}|s|^{\alpha}.$

Main Results (preliminary)

To state the main theorem, let us introduce some notation.

Let $f: X \to S$ be a surjective holomorphic map from a compact complex surface X to a compact Riemann surface S with connected fibers. The direct image sheaf $f_*K_{X/S}$ is a locally free sheaf on S. Here $K_{X/S} = K_X \otimes f^*K_S^{-1}$ is the relative canonical line bundle. Let $\{\phi_1(s), \ldots, \phi_g(s)\}$ be a free basis of $f_*K_{X/S}$ near $0 \in \Delta$.

By the theory of variations of Hodge structures, the following is classical.

Theorem (Griffiths, Schmid, Eriksson-Freixas-Mourougane)

$$\exists \ \alpha_1 \in {f Q}$$
, $u_1 \in {f Z}_{\geq 0}$, $\gamma_1 \in {f R}$ s.t. as $s o 0$,

$$\log \det \left(\int_{X_s} \phi_i(s) \wedge \overline{\phi_j(s)} \right)_{1 \le i,j \le g} = \alpha_1 \log |s|^2 + \nu_1 \log \log \frac{1}{|s|} + \gamma_1 + o(1).$$

Here α_1 and ν_1 are given explicitly in terms of the monodromy action on the limit mixed Hodge structure.

Main Results (preliminary)

Let H be an ample line bundle over X endowed with a Hermitian metric h_H with semi-positive first Chern form. We set $H_s = H|_{X_s}$. $f_*K_{X/S}(H)$ is a locally free sheaf on S. Let $\{\psi_1(s), \ldots, \psi_{g+m}(s)\}$, $m = \deg H_s + g - 1$, be a free basis of $f_*K_{X/S}(H)$ around $0 \in \Delta$. By the representability of the cohomology group $H^q(f^{-1}(U), K_X(H))$ by the harmonic forms due to Takegoshi, the existence of an asymptotic expansion of fiber integrals due to Barlet, and the non-degeneracy of the L^2 -metric due to Mourougane-Takamaya, we still have a similar asymptotic expansion as $s \to 0$ in this case.

Theorem

$$\exists \ \alpha_2 \in \mathbf{Q}, \ \nu_2 \in \mathbf{Z}_{\geq 0}$$
, and $\gamma_2 \in \mathbf{R}$ s.t. as $s \to 0$,

$$\log \det \left(\int_{X_s} h_H(\psi_i(s) \wedge \overline{\psi_j(s)}) \right) = \alpha_2 \log |s|^2 + \nu_2 \log \log \frac{1}{|s|} + \gamma_2 + o(1).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Main Results

Recall that $f: X \to S$ is a surjective proper holomorphic map from a compact complex surface X to a compact Riemann surface S with connected fibers.

 X_s is endowed with the Kähler metric $\gamma_s = \gamma|_{X_s}$. X_0 has N irreducible components: $X_0 = C_1 \cup \cdots \cup C_N$. (We do NOT assume that X_0 is a stable curve.) Recall that $\nu_1, \nu_2 \in \mathbb{Z}_{\geq 0}$ are the coefficients of the subleading term of the determinant of the period integrals. We set

 $\nu = \nu_2 - \nu_1 \in \mathbf{Z}.$

Theorem (Dai-Y.)

If $N \ge 2$ and X_0 is reduced, then $\nu > 0$ and $\exists \ c \in \mathbf{R}_{>0}$ such that

$$\prod_{j=1}^{N-1} \lambda_j(s) = \frac{c + o(1)}{\left(\log\left(1/|s|\right)\right)^{\nu}} \qquad (s \to 0).$$

Since $\lambda_i(s) \leq 1$ for $|s| \ll 1$ and i < N, we have

$$\lambda_i(s) \ge \prod_{j=1}^{N-1} \lambda_j(s) = \frac{c + o(1)}{(\log(1/|s|))^{\nu}}.$$

Since

$$\lambda_1(s)^{N-1} \le \prod_{j=1}^{N-1} \lambda_j(s) = \frac{c+o(1)}{\left(\log\left(1/|s|\right)\right)^{\nu}} \le \lambda_{N-1}(s)^{N-1},$$

we get

$$\lambda_1(s) \le \frac{c^{1/(N-1)} + o(1)}{\left(\log\left(1/|s|\right)\right)^{\nu/(N-1)}} \le \lambda_{N-1}(s).$$

Theorem (Dai-Y.)

 \exists constants $C_1, C_2 > 0$ such that for all $s \in S \setminus \Delta$,

$$\frac{C_1}{\left(\log\left(1/|s|\right)\right)^{\nu}} \le \lambda_1(s) \le \frac{C_2}{\left(\log\left(1/|s|\right)\right)^{\nu/(N-1)}}$$

Ken-Ichi Yoshikawa joint work with X. Dai Degeneration of Riemann surfaces and small of

Estimate for the samll eigenvalues

It is possible to construct an orthonormal system of functions $\{\varphi_1(s), \ldots, \varphi_{N-1}(s)\} \subset C^{\infty}(X_s)$ such that as $s \to 0$,

$$(\varphi_i(s), 1)_{L^2} = o(1), \quad \|\varphi_i(s)\|_{L^2} = 1 + o(1), \quad \|d\varphi_i(s)\|_{L^2}^2 \le \frac{C}{\log(1/|s|)}.$$

Hence, by the mini-max principle, we have the following:

Theorem (Dai-Y.)

 \exists constants $C_1(i), C_2(i) > 0$ such that for all $s \in S^o$,

$$\frac{C_1(i)}{\left(\log\left(1/|s|\right)\right)^{\nu}} \le \lambda_i(s) \le \frac{C_2(i)}{\log\left(1/|s|\right)} \qquad (1 \le i \le N-1).$$

For i = N - 1, one has

$$\frac{C_3}{\left(\log\left(1/|s|\right)\right)^{\nu/(N-1)}} \le \lambda_{N-1}(s) \le \frac{C_2(N-1)}{\log\left(1/|s|\right)}.$$

A Conjecture

Recall that

$$\prod_{i=1}^{N-1} \lambda_i(s) = \frac{c + o(1)}{\left(\log\left(1/|s|\right)\right)^{\nu}} \qquad (s \to 0).$$

Conjecture

 $\nu = \nu_2 - \nu_1 = N - 1 = \#\{\text{irreducible components of } X_0\} - 1.$

In particular,

(*)
$$\prod_{i=1}^{N-1} \lambda_i(s) = \frac{c + o(1)}{\left(\log\left(1/|s|\right)\right)^{N-1}} \qquad (s \to 0).$$

A consequence of the conjecture

Since

$$\frac{C_3}{\left(\log\left(1/|s|\right)\right)^{\nu/(N-1)}} \le \lambda_{N-1}(s) \le \frac{C_2(N-1)}{\log\left(1/|s|\right)},$$

we get

$$\lambda_{N-1}(s) \sim \frac{1}{\log\left(1/|s|\right)}.$$

Then, by (*),

$$\lambda_{N-2}(s)^{N-2} \ge \prod_{i=1}^{N-2} \lambda_i(s) \sim \frac{1}{\left(\log\left(1/|s|\right)\right)^{N-2}}.$$

Namely,

$$\lambda_{N-2}(s) \ge \frac{\text{Const.}}{\log(1/|s|)}$$

æ

< □ > < 同 > < 回 > < 回 > < 回 >

On the other hand, by the mini-max principle,

$$\lambda_{N-2}(s) \le \frac{C_2(N-2)}{\log(1/|s|)}.$$

Hence

$$\lambda_{N-2}(s) \sim \frac{1}{\log\left(1/|s|\right)}.$$

Inductively, we have

$$\lambda_i(s) \sim \frac{1}{\log(1/|s|)}$$
 $(1 \le i \le N-1).$

This is an analogue of the Schoen-Wolpert-Yau theorem for the degenerations of Riemann surfaces to a stable curve.

Recall that H is an ample line bundle endowed with a Hermitian metric h_H with semi-positive curvature. Set

$$(L,h) = (H^{-1}, h_H^{-1})$$

To prove the theorem, we compare the analytic torsions $\tau(X_s, \mathcal{O}_{X_s})$ and $\tau(X_s, L_s)$, where $L_s = L|_{X_s}$.

Let us recall the notion of analytic torsion.

The spectral zeta function

Let (M, h_M) be a compact Riemann surface with a Kähler metric. Let (E, h_E) be a holomorphic Hermitian vector bundle over M. Let $\Box_{0,q} = (\bar{\partial} + \bar{\partial}^*)^2$ be the Laplacian acting on $A_M^{0,q}(E)$. Let $\zeta_{0,q}(s)$ be the zeta function of $\Box_{0,q}$

$$\begin{aligned} \zeta_{0,q}(s) &= \sum_{\lambda \in \sigma(\Box_{0,q}) \setminus \{0\}} \lambda^{-s} \dim E(\lambda, \Box_{0,q}) \\ &= \frac{1}{\Gamma(s)} \int_0^\infty \{ \operatorname{Tr} e^{-t \Box_{0,q}} - h^{0,q}(E) \} t^{s-1} dt \end{aligned}$$

where $E(\lambda, \Box_{0,q})$ is the eigenspace of $\Box_{0,q}$ with eigenvalue λ .

Fact

 $\zeta_{0,q}(s)$ converges absolutely when $\Re s > \dim M$, admits a meromorphic continuation to \mathbb{C} , and is holomorphic at s = 0.

Definition (Ray-Singer, Bismut-Gillet-Soulé)

The analytic torsion of $({\cal M}, {\cal E})$ with respect to the metrics $h_{\cal M}$, $h_{\cal E}$ is the real number

$$\tau(M, E) = \exp\left[-\sum_{q \ge 0} (-1)^q q \,\zeta'_{0,q}(0)\right] = e^{\zeta'_{0,1}(0)} = e^{\zeta'_{0,0}(0)}.$$

We have the following formal identity:

$$\tau(M, E) = \left(\prod_{\lambda \in \sigma(\square_{0,0}) \setminus \{0\}} \lambda^{\dim E(\lambda, \square_{0,0})}\right)^{-1}$$

Of course, the right hand side does not converge.

Outline of the proof 1: Partial analytic torsion

Recall that L is a holomorphic line bundle on X. Set $L_s := L|_{X_s}$. Let

$$K^{L_s}(t, x, x) \sim \frac{a_0(x, L_s)}{t} + a_1(x, L_s) + O(t) \qquad (t \to 0)$$

be the asymptotic expansion of the kernel of $e^{-t\Box_{L_s}}$, where $\Box_{L_s} = \bar{\partial}_{L_s}^* \bar{\partial}_{L_s}$. Then

$$\log \tau(X_s, L_s) = \int_0^1 \frac{dt}{t} \int_{X_s} \{ K^{L_s}(t, x, x) - \frac{a_0(x, L_s)}{t} - a_1(x, L_s) \} dv_x + \int_1^\infty \frac{dt}{t} \{ \int_{X_s} K^{L_s}(t, x, x) dv_x - h^{0,q}(L_s) \} - \Gamma'(1) \{ \int_{X_s} a_0(x, L_s) dv_x - h^0(L_s) \}$$

where $\int_{X_s} a_0(x, L_s) dv_x$ is a topological constant independent of $s \in S$.

Let Ω be an open neighborhood of the singular point $o \in \operatorname{Sing} X_0$. Define the partial analytic torsions of (X_s, L_s) by

$$\log \tau^{\Omega}_{[0,1]}(X_s, L_s) = \int_0^1 \frac{dt}{t} \int_{\Omega \cap X_s} \{ K^{L_s}(t, x, x) - \frac{a_0(x, L_s)}{t} - a_1(x, L_s) \} dv_x$$

$$\log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, L_s) = \int_0^1 \frac{dt}{t} \int_{X_s \setminus \Omega} \{ K^{L_s}(t, x, x) - \frac{a_0(x, L_s)}{t} - a_1(x, L_s) \} dv_x$$

$$\log \tau_{[1,\infty]}(X_s, L_s) = \int_1^{\infty} \frac{dt}{t} \{ \int_{X_s} K^{L_s}(t, x, x) dv_x - h^0(L_s) \}$$

Then \exists constant C independent of $s \in S^o$ such that

$$\log \tau(X_s, L_s) = \log \tau_{[0,1]}^{\Omega}(X_s, L_s) + \log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, L_s) + \log \tau_{[1,\infty]}(X_s, L_s) + C$$

Estimate for the partial analytic torsion I

Recall that L^{-1} is an ample line bundle on X. Assume that $(L,h)|_{\Omega}$ is a trivial holomorphic Hermitian line bundle on $\Omega \supset \operatorname{Sing} X_0$ and that $c_1(L,h) \leq 0$ over X. (Such a metric h exists because $\operatorname{Sing} X_0$ is isolated.) In what follows, we adopt the following definition:

$$O(1) = const. + o(1)$$

Lemma

$$\log \tau^{\Omega}_{[0,1]}(X_s, \mathcal{O}_{X_s}) - \log \tau^{\Omega}_{[0,1]}(X_s, L_s) = O(1) \qquad (s \to 0).$$

Lemma

$$\log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, \mathcal{O}_{X_s}) = O(1), \qquad \log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, L) = O(1) \qquad (s \to 0).$$

Ken-Ichi Yoshikawa joint work with X. Dai Degeneration of Riemann surfaces and small of

▲ □ ▶ ▲ □ ▶ ▲

Estimate for the partial analytic torsion II

Let k(t, x, y) be the heat kernel of the Laplacain \Box_s acting on $C^{\infty}(X_s)$. Since L^{-1} is ample, we have $H^0(X_s, L_s) = 0$. Recall

$$\log \tau_{[1,\infty]}(X_s, \mathcal{O}_{X_s}) = \int_1^\infty \frac{dt}{t} (\int_{X_s} k(t, x, x) dv_x - 1) = \int_1^\infty \sum_{\lambda_i(s) > 0} e^{-t\lambda_i(s)} \frac{dt}{t}$$

$$\log \tau_{[1,\infty]}(X_s, L_s) = \int_1^\infty \frac{dt}{t} \int_{X_s} K^{L_s}(t, x, x) dv_x = \int_1^\infty \sum_{\mu_i(s) > 0} e^{-t\mu_i(s)} \frac{dt}{t}$$

Lemma

$$\log \tau_{[1,\infty]}(X_s, \mathcal{O}_{X_s}) = \log \left\{ \prod_{i=1}^{N-1} \lambda_i(s) \right\} + O(1) \qquad (s \to 0).$$

Lemma

$$\log \tau_{[1,\infty]}(X_s, L_s) = O(1) \qquad (s \to 0).$$

To state some results concerning the asymptotic behavior of the analytic torsion, let us recall the notion of Milnor number.

If $p \in \text{Sing } X_0$ and $f(x,y) \in \mathbb{C}\{x,y\}$ is a local defining equation of (X_0,p) , then

$$\mu(X_0, p) = \dim_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(f_x(x, y), f_y(x, y))}$$

is the Milnor number of the singularity (X_0, p) . The total Milnor number of the singular fiber X_0 is defined as:

$$\mu(\operatorname{Sing} X_0) = \sum_{p \in \operatorname{Sing} X_0} \mu(X_0, p).$$

Asymptotic behavior of analytic torsion II

Applying the Bismut-Lebeau embedding theorem for Quillen metrics to the family of embeddings $X_s = f^{-1}(s) \hookrightarrow X$, we have the following theorems.

Theorem (Y.)

$$\log \tau(X_s, \mathcal{O}_{X_s}) + \log \det \left(\int_{X_s} \phi_i(s) \wedge \overline{\phi_j(s)} \right)_{1 \le i,j \le g}$$
$$= -\frac{1}{6} \mu(\operatorname{Sing} X_0) \log |s|^2 + O(1) \qquad (s \to 0).$$

Theorem (Y.)

$$\log \tau(X_s, L_s) + \log \det \left(\int_{X_s} h_H(\psi_i(s) \wedge \overline{\psi_j(s)}) \right)_{1 \le i,j \le g+m}$$
$$= -\frac{1}{6} \mu(\operatorname{Sing} X_0) \, \log |s|^2 + O(1) \qquad (s \to 0).$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Asymptotic behavior of analytic torsion III

Theorem (Y.)

One has the following asymptotic expansions as $s \rightarrow 0$:

$$\log \tau(X_s, \mathcal{O}_{X_s}) = \kappa_1 \, \log |s|^2 - \nu_1 \, \log(\log \frac{1}{|s|^2}) + O(1) \qquad (s \to 0),$$

$$\log \tau(X_s, L) = \kappa_2 \, \log |s|^2 - \nu_2 \, \log(\log \frac{1}{|s|^2}) + O(1) \qquad (s \to 0).$$

Here, $\kappa_1, \kappa_2 \in \mathbb{Q}$. Moreover, the leading terms coincide:

$$\kappa_1 = \kappa_2.$$

In particular, as $s \to 0$,

$$\log \tau(X_s, \mathcal{O}_{X_s}) - \log \tau(X_s, L) = (\nu_2 - \nu_1) \log(\log \frac{1}{|s|^2}) + O(1).$$

< 行

Asymptotic behavior of analytic torsion IV

To prove this theorem, we consider the semistable reduction of $f: X \to S$.

Theorem (Mumford et al: Semistable reduction theorem '73)

Let (T,0) be another pointed unit disc of \mathbb{C} . Then there exist $m \in \mathbb{Z}$ and a family $\pi \colon (Y,Y_0) \to (T,0)$ with the following properties.

- $\pi: Y \setminus Y_0 \to T \setminus \{0\}$ is the pull-back of $f: X \setminus X_0 \to S \setminus \{0\}$ by the map $\mu: T \to S$, $\mu(t) = t^m$.
- Y is smooth and Y_0 is a reduced, normal crossing divisor, i.e., locally,

$$Y_t = \{z_0 z_1 = t\}.$$

• There is a map $F: Y \to X$ sending the fibers of π to fibers of f such that

$$f \circ F = \mu \circ f.$$

<日

<</p>

Asymptotic behavior of analytic torsion IV

This situation can be summarized as the commutative diagram:

$$F \colon (Y, Y_0) \to (X, X_0)$$
$$\pi \downarrow \qquad \qquad \downarrow f$$
$$\mu \colon (T, 0) \to (S, 0)$$

with $s = t^m$, and Y_0 reduced and normal crossing divisor, and Y smooth.

Why $\kappa_1 = \kappa_2$?

The coefficients κ_1 , κ_2 of the leading term of the asymptotic expansion of the analytic torsion can be expressed as the integral of certain characteristic classes determined by the pair $(U, \operatorname{Sing} X_0)$, the bundle $\mathcal{O}_X|_U$, $H|_U$ and the pair $(F^{-1}(U), F^{-1}(\operatorname{Sing} X_0))$. Here U is an arbitrary small neighborhood of $\operatorname{Sing} X_0$ in X. Hence, if $H|_U \cong \mathcal{O}_X|_U$, then $\kappa_1 = \kappa_2$. (This explains why we must assume that f has only isolated critical points on X_0 .)

We have

$$\log \tau(X_s, \mathcal{O}_{X_s}) = \log \tau_{[0,1]}^{\Omega}(X_s, \mathcal{O}_{X_s}) + \log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, \mathcal{O}_{X_s}) + \log \tau_{[1,\infty]}(X_s, \mathcal{O}_{X_s}) + C_1, \log \tau(X_s, L_s) = \log \tau_{[0,1]}^{\Omega}(X_s, L_s) + \log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, L_s) + \log \tau_{[1,\infty]}(X_s, L_s) + C_2,$$

where C_1 and C_2 are topological terms.

Proof of the Main Theorem II

Since

$$\log \tau_{[0,1]}^{\Omega}(X_s, \mathcal{O}_{X_s}) - \log \tau_{[0,1]}^{\Omega}(X_s, L_s) = O(1),$$

$$\log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, \mathcal{O}_{X_s}) - \log \tau_{[0,1]}^{X_s \setminus \Omega}(X_s, L_s) = O(1),$$

$$\log \tau_{[1,\infty]}(X_s, \mathcal{O}_{X_s}) - \log \tau_{[1,\infty]}(X_s, L_s) = \log\{\prod_{i=1}^{N-1} \lambda_i(s)\} + O(1),$$

we get

$$\log \tau(X_s, \mathcal{O}_{X_s}) - \log \tau(X_s, L_s) = \log \{\prod_{i=1}^{N-1} \lambda_i(s)\} + O(1).$$

Namely, the product of the small eigenvalues appears as the difference of the analytic torsions.

Proof of the Main Theorem III

On the other hand, we have

$$\log \tau(X_s, \mathcal{O}_{X_s}) - \log \tau(X_s, L) = (\nu_2 - \nu_1) \log(\log \frac{1}{|s|^2}) + O(1) \qquad (s \to 0).$$

Comparing this with the previous formula

$$\log \tau(X_s, \mathcal{O}_{X_s}) - \log \tau(X_s, L_s) = \log \{ \prod_{i=1}^{N-1} \lambda_i(s) \} + O(1),$$

we get the desired formula:

$$\log\{\prod_{i=1}^{N-1}\lambda_i(s)\} = (\nu_2 - \nu_1)\,\log(\log\frac{1}{|s|^2}) + O(1) \qquad (s \to 0). \quad \Box$$

Let $f: X \to S$ be a one-parameter degenerating family of compact Kähler manifolds of dimension n such that f has only isolated critical points. Let $\{0 = \cdots = 0 < \lambda_1(s) \le \lambda_2(s) \le \cdots \le \lambda_k(s) \le \cdots\}$ be the eigenvalues of the Laplacian $\Box_{n,0}$ acting on (n, 0)-forms on $X_s = f^{-1}(s)$ with respect to the metric induced from the Kähler metric on X. Then the following hold:

- For all $k \in \mathbb{N}$, $\lambda_k(s)$ extends to a continuous function on S.
- Let $\lambda_1(s) \leq \cdots \leq \lambda_N(s)$ be the small eigenvalues of $\Box_{n,0}$. Then there exists $\nu \in \mathbb{N}$, $c \in \mathbb{R}_{>0}$ such that

$$\prod_{k=1}^{N} \lambda_k(s) = \frac{c + o(1)}{(\log(1/|s|))^{\nu}} \qquad (s \to 0).$$

• In fact, for $1 \le k \le N$, one has $\lambda_k(s) \sim 1/\log(1/|s|)$ as $s \to 0$.

A (1) < A (1) < A (1) </p>