Expected centre of mass of the random Kodaira embedding

Yoshinori Hashimoto

Tokyo Institute of Technology

4th November 2021 The 27th Symposium on Complex Geometry

Kodaira embedding and the centre of mass

• • = • • = •

Kodaira embedding

Let $X \subset \mathbb{CP}^{N-1}$ be a complex smooth projective variety, i.e. X is a complex manifold defined as an algebraic set given by the vanishing of various homogeneous polynomials in N variables.

Theorem (Kodaira 1954)

If X is a complex manifold with an ample line bundle L (i.e. L is "positive" in a certain sense), there exists a holomorphic embedding

$$\iota: X \hookrightarrow \mathbb{P}(H^0(X, L^{\otimes k})^{\vee}) \cong \mathbb{CP}^{N-1}$$

for all $k \gg 0$, where $N := \dim_{\mathbb{C}} H^0(X, L^{\otimes k})$.

 $\iota(X) \subset \mathbb{CP}^{N-1}$ is an algebraic variety by Chow's theorem.

Centre of mass

Definition

The **centre of mass** of the Kodaira embedding $\iota : X \hookrightarrow \mathbb{CP}^{N-1}$ is an $N \times N$ hermitian matrix defined by

$$\bar{u}_X(\iota) := \int_{\iota(X)} \frac{Z_i \bar{Z}_j}{\sum_{m=1}^N |Z_m|^2} \omega_{FS}^n,$$

where $[Z_1 : \cdots : Z_N]$ is the homogeneous coordinates for \mathbb{CP}^{N-1} , ω_{FS} is the Fubini–Study metric on \mathbb{CP}^{N-1} , and $n = \dim_{\mathbb{C}} X$.

Equivalently, $\bar{\mu}_X(\iota)$ is the integral of the moment map

$$\mu: \mathbb{CP}^{N-1} \to \sqrt{-1}\mathfrak{u}(N)^{\vee} \cong \sqrt{-1}\mathfrak{u}(N)$$

for $U(N) \curvearrowright \mathbb{CP}^{N-1}$ over $\iota(X)$, i.e. $\bar{\mu}_X(\iota) = \int_{\iota(X)} \mu \ \omega_{FS}^n$.

/⊒ ► < ∃ ►

Centre of mass of the displaced embedding

Important point: natural linear action $GL(N, \mathbb{C}) \curvearrowright \mathbb{CP}^{N-1}$ induces an action $\iota \mapsto g \cdot \iota$ on the Kodaira embedding $\iota : X \hookrightarrow \mathbb{CP}^{N-1}$.

Theorem (Zhang 1996, Luo 1998)

There exists $g \in GL(N, \mathbb{C})$ such that $\overline{\mu}_X(g \cdot \iota)$ is a constant multiple of the identity matrix if and only if the embedding $\iota : X \hookrightarrow \mathbb{CP}^{N-1}$ is Chow stable.

- Chow stability is a classical stability condition in Geometric Invariant Theory which is important in constructing a moduli space of varieties embedded in CP^{N-1} (Chow scheme).
- Whether a given (embedded) variety *ι* : X → CP^{N-1} is Chow stable or not is a very difficult problem in general.

Example: trivial embedding of \mathbb{CP}^{N-1}

Lemma

Let $\iota : \mathbb{CP}^{N-1} \hookrightarrow \mathbb{CP}^{N-1}$ be the identity map. Then for any $g \in GL(N, \mathbb{C})$, $\overline{\mu}_{\mathbb{CP}^{N-1}}(g \cdot \iota)$ is a constant multiple of the identity matrix.

Set $[Z'_1:\cdots:Z'_N] = g \cdot [Z_1:\cdots:Z_N]$. On an open dense subset $\{Z'_1 \neq 0\}$ of \mathbb{CP}^{N-1} , use polar coordinates $Z'_i/Z'_1 = r_i e^{\sqrt{-1}\theta_i}$, $i \geq 2$, to find

$$\begin{split} \bar{\mu}_{\mathbb{CP}^{N-1}}(g \cdot \iota) &= \int_{\mathbb{CP}^{N-1}} \frac{Z'_i \bar{Z}'_j}{\sum_{m=1}^N |Z'_m|^2} \omega_{FS'}^{N-1} \\ &= \int_{\mathbb{R}^{N-1}_{>0}} \operatorname{Jac}(\vec{r}) d\vec{r} \int_{[0,2\pi]^{N-1}} \frac{r_i r_j e^{\sqrt{-1}(\theta_i - \theta_j)}}{1 + \sum_{m=2}^N r_m^2} d\vec{\theta}. \end{split}$$

Off-diagonal entries are zero by the periodicity of the angle variables. Diagonal entries are invariant under permutation. $\Rightarrow \bar{\mu}_{\mathbb{CP}^{N-1}}(g \cdot \iota) = \text{const.id}_N.$

э

Example: Veronese embedding

Lemma

Let $\iota : \mathbb{CP}^{m-1} \hookrightarrow \mathbb{CP}^{N-1}$ be the degree d Veronese embedding

$$[z_1:\cdots:z_m]\mapsto [Z_1:\cdots:Z_N]:=[z_1^d:z_1^{d-1}z_2:\cdots:z_m^d].$$

Then, $\overline{\mu}_{\mathbb{CP}^{m-1}}(g \cdot \iota)$ is a constant multiple of the identity for some diagonal matrix $g \in GL(N, \mathbb{C})$.

Exactly as in the previous example, we find that the off-diagonal entries of $\bar{\mu}_{\mathbb{CP}^{m-1}}(g \cdot \iota)$ must be zero by the computation in polar coordinates. Unlike the previous one, the diagonal entries are not invariant under permutation, but we may scale each Z_i by an appropriate diagonal matrix g to get $\bar{\mu}_{\mathbb{CP}^{m-1}}(g \cdot \iota) = \text{const.id}_N$.

Centre of mass and canonical Kähler metrics

- The embedding $g \cdot \iota : X \hookrightarrow \mathbb{CP}^{N-1}$ is called **balanced** if $\overline{\mu}_X(g \cdot \iota)$ is a constant multiple of the identity matrix $\iff g \cdot \iota$ attains a "zero of the moment map".
- The restriction of the Fubini–Study metric on \mathbb{CP}^{N-1} by the balanced embedding is called the **balanced metric**.
- Theorem of Donaldson (2001): a constant scalar curvature Kähler metric can be approximated by a sequence of balanced metrics (which implies asymptotic Chow stability), when X has discrete automorphisms.
- Generalisations to the non-discrete automorphisms case done by Mabuchi, Sano-Tipler, Seyyedali, H.

Upshot: $\bar{\mu}_X(g \cdot \iota)$ is an interesting quantity that depends on g and ι in a complicated nonlinear manner and captures subtle geometric properties of $\iota : X \hookrightarrow \mathbb{CP}^{N-1}$.

Random Kodaira embedding

Suppose that we displace the Kodaira embedding $\iota: X \hookrightarrow \mathbb{CP}^{N-1}$ by a random element $g \in GL(N, \mathbb{C})$.

Problem

Let $d\sigma$ be a probability measure on $GL(N, \mathbb{C})$. What is the expectation of the centre of mass

$$\mathbb{E}[\bar{\mu}_X(g\cdot\iota)] = \int_{GL(N,\mathbb{C})} \bar{\mu}_X(g\cdot\iota) d\sigma$$

with respect to $d\sigma$?

In spite of its apparent simplicity, this is a nontrivial problem because $\bar{\mu}_X(g \cdot \iota)$ depends nonlinearly on g.

<u>Remark</u>: random matrices and Kähler metrics also considered by Ferrari–Klevtsov–Zelditch.

æ

Main result

Theorem (H. 2020)

Let $d\sigma$ be a probability measure on $GL(N, \mathbb{C})$ induced by the fibration $U(N) \to GL(N, \mathbb{C}) \twoheadrightarrow GL(N, \mathbb{C})/U(N)$ with

- the Haar measure on the fibre U(N),
- an absolutely continuous unitarily invariant measure $d\sigma_B$ of finite volume on the base $GL(N, \mathbb{C})/U(N)$.

Then, for any $\iota : X \hookrightarrow \mathbb{CP}^{N-1}$, the expected centre of mass is a constant multiple of the identity matrix: $\mathbb{E}[\bar{\mu}_X(g \cdot \iota)] = \text{const.id}_N$.

Example (of the measure on the base)

The measure on $GL(N, \mathbb{C})/U(N)$, the set of all positive definite hermitian matrices, may be given by the **Gaussian unitary ensemble** $d\sigma_B = \exp(-\operatorname{tr}(H^2))dH$, where dH is the Lebesgue measure on the space of hermitian matrices.

Unitary version of the main result

Theorem (H. 2020)

Let $d\sigma_U$ be the Haar measure on the unitary group U(N). For any smooth projective variety $\iota : X \hookrightarrow \mathbb{CP}^{N-1}$, the expectation of the unitarily displaced centre of mass

$$\mathbb{E}_U[\bar{\mu}_X(u\cdot\iota)] := \int_{U(N)} \bar{\mu}_X(u\cdot\iota) d\sigma_U$$

is a constant multiple of the identity matrix.

The proof of this theorem is much easier than the previous one, since the action by $u \in U(N)$ simplifies as

$$\bar{\mu}_X(u \cdot \iota) = \int_{\iota(X)} \frac{u \cdot Z_i \overline{u \cdot Z_j}}{\sum_{m=1}^N |u \cdot Z_m|^2} (u^* \omega_{FS}^n) = u \left(\int_{\iota(X)} \frac{Z_i \overline{Z_j}}{\sum_{m=1}^N |Z_m|^2} \omega_{FS}^n \right) u^{-1},$$

noting that U(N) acts isometrically.

Strategy of the proof: incidence variety

We need to compute

$$\mathbb{E}[\bar{\mu}_X(g \cdot \iota)] = \int_{GL(N,\mathbb{C})} \bar{\mu}_X(g \cdot \iota) d\sigma$$

=
$$\int_{g \in GL(N,\mathbb{C})} d\sigma \int_{x' \in g \cdot \iota(X)} \frac{Z_i(x') \overline{Z_j(x')}}{\sum_{m=1}^N |Z_m(x')|^2} \omega_{FS}^n(x').$$

We do so by "exchanging" the order of integrals over $\iota(X)$ and $GL(N, \mathbb{C})$; we first define the incidence variety

$$\mathcal{I} := \{ (g, g \cdot x) \in GL(N, \mathbb{C}) \times \mathbb{CP}^{N-1} \mid x \in \iota(X) \},\$$

with $\pi : \mathcal{I} \twoheadrightarrow \iota(X)$, $\pi(g, g \cdot x) := g^{-1}(g \cdot x) = x$, and an appropriate measure $d\tau_{\mathcal{I}}$ on \mathcal{I} . so that we re-formulate the above integral as

$$\mathbb{E}[\bar{\mu}_X(g \cdot \iota)] = \int_{\mathcal{I}} \frac{g \cdot Z_i(x)\overline{g \cdot Z_j(x)}}{\sum_{m=1}^N |g \cdot Z_m(x)|^2} \frac{g^* \omega_{FS}^n(x)}{\omega_{FS}^n(x)} d\tau_{\mathcal{I}}.$$

Coarea formula

Theorem (Coarea formula, Federer)

Let (M, g_M) and (S, g_S) be smooth Riemannian manifolds with dim $M > \dim S$. Suppose that $f : M \to S$ is a smooth surjection. Then for any measurable function f on M we have

$$\int_{p\in M} \phi(p) d\sigma_{g_M} = \int_{q\in S} d\sigma_{g_S} \int_{p\in M_{\mathrm{reg}}\cap f^{-1}(q)} \frac{\phi(p)}{Jf(p)} d\sigma_{g_M}|_{f^{-1}(q)},$$

where $M_{\rm reg}$ is the regular locus of f and Jf is the generalised Jacobian of f .

Example: if $M = S \times S'$ is a Riemannian product, we have $Jf \equiv 1$ and the above theorem reduces to the classical Fubini theorem.

This theorem can be generalised to non-smooth f (Federer).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Strategy of the proof: application of the coarea formula

We apply the coarea formula to $\pi : \mathcal{I} \to \iota(X)$, $\pi(g, g \cdot x) := x$, to find that $\mathbb{E}[\bar{\mu}_X(g \cdot \iota)]$ equals

$$\int_{x\in\iota(X)}\omega_{FS}^n(x)\int_{g\in GL(N,\mathbb{C})}\frac{g\cdot Z_i(x)\overline{g\cdot Z_j(x)}}{\sum_{m=1}^N|g\cdot Z_m(x)|^2}\frac{1}{J\pi(g,x)}\frac{g^*\omega_{FS}^n(x)}{\omega_{FS}^n(x)}d\sigma,$$

where $J\pi$ is the generalised Jacobian of π (I learned this trick from Jean-Yves Welschinger).

The key result is the following.

Proposition

For any $g \in GL(N, \mathbb{C})$ and $x \in \iota(X)$ we have

$$\frac{1}{J\pi(g,x)}\frac{g^*\omega_{FS}^n(x)}{\omega_{FS}^n(x)}=1.$$

Strategy of the proof: global Cartan decomposition

We are thus reduced to compute the following integral:

$$\mathbb{E}[\bar{\mu}_X(g \cdot \iota)] = \int_{x \in \iota(X)} \omega_{FS}^n(x) \int_{g \in GL(N,\mathbb{C})} \frac{g \cdot Z_i(x) \overline{g \cdot Z_j(x)}}{\sum_{m=1}^N |g \cdot Z_m(x)|^2} d\sigma.$$

We write $g = \eta \Lambda u$ ($\eta, u \in U(N)$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_N) \in \mathbb{R}^N$), by recalling the global Cartan decomposition for $GL(N, \mathbb{C})$. Recalling our hypothesis that $d\sigma_B$ is unitarily invariant and absolutely continuous, we may write

$$d\sigma(g) =
ho(\Lambda) \prod_{1 \le i \ne j \le N} |\lambda_i - \lambda_j|^2 d\Lambda \ d\sigma_U(\eta) \ d\sigma_U(u),$$

for some density function ρ that depends only on Λ . <u>Example</u>: $\rho(\Lambda) = \exp(-\sum_{i=1}^{N} \lambda_i^2)$ for the Gaussian unitary ensemble. In what follows, we write $\rho'(\Lambda)$ for $\rho(\Lambda) \prod_{1 \le i \ne j \le N} |\lambda_i - \lambda_j|^2$.

Strategy of the proof: reduction to \mathbb{CP}^{N-1}

Thus, noting $g = \eta \Lambda u$, the integral over $GL(N, \mathbb{C})$ reduces to

$$\begin{split} &\int_{g \in GL(N,\mathbb{C})} \frac{g \cdot Z_i(x)\overline{g \cdot Z_j(x)}}{\sum_{m=1}^{N} |g \cdot Z_m(x)|^2} d\sigma \\ &= \int_{\mathbb{R}^N} \rho'(\Lambda) d\Lambda \int_{U(N)} d\sigma_U(\eta) \int_{U(N)} \frac{(\eta \Lambda u) \cdot Z_i(x) \overline{(\eta \Lambda u) \cdot Z_j(x)}}{\sum_{m=1}^{N} |(\eta \Lambda u) \cdot Z_m(x)|^2} d\sigma_U(u) \\ &= \int_{\mathbb{R}^N} \rho'(\Lambda) d\Lambda \int_{U(N)} \eta \left(\int_{U(N)} \frac{(\Lambda u) \cdot Z_i(x) \overline{(\Lambda u) \cdot Z_j(x)}}{\sum_{m=1}^{N} |(\Lambda u) \cdot Z_m(x)|^2} d\sigma_U(u) \right) \eta^{-1} d\sigma_U(\eta) \end{split}$$

For each $p \in \mathbb{CP}^{N-1}$ we have $\operatorname{Stab}_{U(N)}(p) = U(1) \times U(N-1)$, which implies that the above integral in u is over $U(N)/U(1) \times U(N-1) \cong \mathbb{CP}^{N-1}$. By the uniqueness of the group invariant measure on homogeneous spaces, we find that $d\sigma_U(u)$ must be a constant multiple of ω_{FS}^{N-1} .

Strategy of the proof: computation over \mathbb{CP}^{N-1}

We are thus reduced to the computation over \mathbb{CP}^{N-1} , where explicit calculations in polar coordinates are available. Exactly as we saw in the previous example, we find the following.

Proposition

$$\int_{U(N)} \frac{(\Lambda u) \cdot Z_{i}(x) \overline{(\Lambda u) \cdot Z_{j}(x)}}{\sum_{m=1}^{N} |(\Lambda u) \cdot Z_{m}(x)|^{2}} d\sigma_{U}(u) \text{ is a diagonal matrix.}$$

Thus, the integral

$$\begin{split} &\int_{g \in GL(N,\mathbb{C})} \frac{g \cdot Z_i(x) \overline{g \cdot Z_j(x)}}{\sum_{m=1}^{N} |g \cdot Z_m(x)|^2} d\sigma \\ &= \int_{\mathbb{R}^N} \rho'(\Lambda) d\Lambda \int_{U(N)} \eta \left(\int_{U(N)} \frac{(\Lambda u) \cdot Z_i(x) \overline{(\Lambda u) \cdot Z_j(x)}}{\sum_{m=1}^{N} |(\Lambda u) \cdot Z_m(x)|^2} d\sigma_U(u) \right) \eta^{-1} d\sigma_U(\eta) \end{split}$$

over $GL(N, \mathbb{C})$ becomes a constant multiple of the identity matrix.

Strategy of the proof: conclusion

Thus, for each $x \in \iota(X)$ we find that

$$\int_{g \in GL(N,\mathbb{C})} \frac{g \cdot Z_i(x) \overline{g \cdot Z_j(x)}}{\sum_{m=1}^{N} |g \cdot Z_m(x)|^2} d\sigma$$

is a constant multiple of the identity matrix, hence so is

$$\mathbb{E}[\bar{\mu}_X(g \cdot \iota)] = \int_{x \in \iota(X)} \omega_{FS}^n(x) \int_{g \in GL(N,\mathbb{C})} \frac{g \cdot Z_i(x)\overline{g \cdot Z_j(x)}}{\sum_{m=1}^N |g \cdot Z_m(x)|^2} d\sigma,$$

as claimed.

Thank you very much for listening!

E ► < E ►</p>

æ