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Kodaira embedding

Let X ⊂ CPN−1 be a complex smooth projective variety, i.e. X is a
complex manifold defined as an algebraic set given by the
vanishing of various homogeneous polynomials in N variables.

Theorem (Kodaira 1954)

If X is a complex manifold with an ample line bundle L (i.e. L is
“positive” in a certain sense), there exists a holomorphic
embedding

ι : X ↪→ P(H0(X , L⊗k)∨) ∼= CPN−1

for all k � 0, where N := dimCH0(X , L⊗k).

ι(X ) ⊂ CPN−1 is an algebraic variety by Chow’s theorem.
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Centre of mass

Definition

The centre of mass of the Kodaira embedding ι : X ↪→ CPN−1 is
an N × N hermitian matrix defined by

µ̄X (ι) :=

∫
ι(X )

Zi Z̄j∑N
m=1 |Zm|2

ωn
FS ,

where [Z1 : · · · : ZN ] is the homogeneous coordinates for CPN−1,
ωFS is the Fubini–Study metric on CPN−1, and n = dimC X .

Equivalently, µ̄X (ι) is the integral of the moment map

µ : CPN−1 →
√
−1u(N)∨ ∼=

√
−1u(N)

for U(N) y CPN−1 over ι(X ), i.e. µ̄X (ι) =
∫
ι(X ) µ ω

n
FS .

Yoshinori Hashimoto Random Kodaira embedding 4/20



Kodaira embedding and the centre of mass Results Centre of mass Examples Canonical Kähler metrics Problem

Centre of mass of the displaced embedding

Important point: natural linear action GL(N,C) y CPN−1 induces
an action ι 7→ g · ι on the Kodaira embedding ι : X ↪→ CPN−1.

Theorem (Zhang 1996, Luo 1998)

There exists g ∈ GL(N,C) such that µ̄X (g · ι) is a constant
multiple of the identity matrix if and only if the embedding
ι : X ↪→ CPN−1 is Chow stable.

1 Chow stability is a classical stability condition in Geometric
Invariant Theory which is important in constructing a moduli
space of varieties embedded in CPN−1 (Chow scheme).

2 Whether a given (embedded) variety ι : X ↪→ CPN−1 is Chow
stable or not is a very difficult problem in general.
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Example: trivial embedding of CPN−1

Lemma

Let ι : CPN−1 ↪→ CPN−1 be the identity map. Then for any
g ∈ GL(N,C), µ̄CPN−1(g · ι) is a constant multiple of the identity
matrix.

Set [Z ′1 : · · · : Z ′N ] = g · [Z1 : · · · : ZN ]. On an open dense subset

{Z ′1 6= 0} of CPN−1, use polar coordinates Z ′i /Z
′
1 = rie

√
−1θi ,

i ≥ 2, to find

µ̄CPN−1(g · ι) =

∫
CPN−1

Z ′i Z̄
′
j∑N

m=1 |Z ′m|2
ωN−1
FS ′

=

∫
RN−1
>0

Jac(~r)d~r

∫
[0,2π]N−1

ri rje
√
−1(θi−θj )

1 +
∑N

m=2 r
2
m

d~θ.

Off-diagonal entries are zero by the periodicity of the angle
variables. Diagonal entries are invariant under permutation.
⇒ µ̄CPN−1(g · ι) = const.idN .
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Example: Veronese embedding

Lemma

Let ι : CPm−1 ↪→ CPN−1 be the degree d Veronese embedding

[z1 : · · · : zm] 7→ [Z1 : · · · : ZN ] := [zd1 : zd−11 z2 : · · · : zdm].

Then, µ̄CPm−1(g · ι) is a constant multiple of the identity for some
diagonal matrix g ∈ GL(N,C).

Exactly as in the previous example, we find that the off-diagonal
entries of µ̄CPm−1(g · ι) must be zero by the computation in polar
coordinates. Unlike the previous one, the diagonal entries are not
invariant under permutation, but we may scale each Zi by an
appropriate diagonal matrix g to get µ̄CPm−1(g · ι) = const.idN .
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Centre of mass and canonical Kähler metrics

The embedding g · ι : X ↪→ CPN−1 is called balanced if
µ̄X (g · ι) is a constant multiple of the identity matrix
⇐⇒ g · ι attains a “zero of the moment map”.

The restriction of the Fubini–Study metric on CPN−1 by the
balanced embedding is called the balanced metric.

Theorem of Donaldson (2001): a constant scalar curvature
Kähler metric can be approximated by a sequence of balanced
metrics (which implies asymptotic Chow stability), when X
has discrete automorphisms.

Generalisations to the non-discrete automorphisms case done
by Mabuchi, Sano–Tipler, Seyyedali, H.

Upshot: µ̄X (g · ι) is an interesting quantity that depends on g and
ι in a complicated nonlinear manner and captures subtle geometric
properties of ι : X ↪→ CPN−1.

Yoshinori Hashimoto Random Kodaira embedding 8/20



Kodaira embedding and the centre of mass Results Centre of mass Examples Canonical Kähler metrics Problem

Random Kodaira embedding

Suppose that we displace the Kodaira embedding ι : X ↪→ CPN−1

by a random element g ∈ GL(N,C).

Problem

Let dσ be a probability measure on GL(N,C). What is the
expectation of the centre of mass

E[µ̄X (g · ι)] =

∫
GL(N,C)

µ̄X (g · ι)dσ

with respect to dσ?

In spite of its apparent simplicity, this is a nontrivial problem
because µ̄X (g · ι) depends nonlinearly on g .

Remark: random matrices and Kähler metrics also considered by
Ferrari–Klevtsov–Zelditch.
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Results
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Main result

Theorem (H. 2020)

Let dσ be a probability measure on GL(N,C) induced by the
fibration U(N)→ GL(N,C) � GL(N,C)/U(N) with

the Haar measure on the fibre U(N),

an absolutely continuous unitarily invariant measure dσB of
finite volume on the base GL(N,C)/U(N).

Then, for any ι : X ↪→ CPN−1, the expected centre of mass is a
constant multiple of the identity matrix: E[µ̄X (g · ι)] = const.idN .

Example (of the measure on the base)

The measure on GL(N,C)/U(N), the set of all positive definite
hermitian matrices, may be given by the Gaussian unitary
ensemble dσB = exp(−tr(H2))dH, where dH is the Lebesgue
measure on the space of hermitian matrices.
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Unitary version of the main result

Theorem (H. 2020)

Let dσU be the Haar measure on the unitary group U(N). For any
smooth projective variety ι : X ↪→ CPN−1, the expectation of the
unitarily displaced centre of mass

EU [µ̄X (u · ι)] :=

∫
U(N)

µ̄X (u · ι)dσU

is a constant multiple of the identity matrix.

The proof of this theorem is much easier than the previous one,
since the action by u ∈ U(N) simplifies as

µ̄X (u·ι) =

∫
ι(X )

u · Ziu · Z j∑N
m=1 |u · Zm|2

(u∗ωn
FS) = u

(∫
ι(X )

Zi Z̄j∑N
m=1 |Zm|2

ωn
FS

)
u−1,

noting that U(N) acts isometrically.
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Strategy of the proof: incidence variety

We need to compute

E[µ̄X (g · ι)] =

∫
GL(N,C)

µ̄X (g · ι)dσ

=

∫
g∈GL(N,C)

dσ

∫
x ′∈g ·ι(X )

Zi (x
′)Zj(x ′)∑N

m=1 |Zm(x ′)|2
ωn
FS(x ′).

We do so by “exchanging” the order of integrals over ι(X ) and
GL(N,C); we first define the incidence variety

I := {(g , g · x) ∈ GL(N,C)× CPN−1 | x ∈ ι(X )},

with π : I � ι(X ), π(g , g · x) := g−1(g · x) = x , and an
appropriate measure dτI on I. so that we re-formulate the above
integral as

E[µ̄X (g · ι)] =

∫
I

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

g∗ωn
FS(x)

ωn
FS(x)

dτI .
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Coarea formula

Theorem (Coarea formula, Federer)

Let (M, gM) and (S , gS) be smooth Riemannian manifolds with
dimM > dim S . Suppose that f : M → S is a smooth surjection.
Then for any measurable function f on M we have∫

p∈M
φ(p)dσgM =

∫
q∈S

dσgS

∫
p∈Mreg∩f −1(q)

φ(p)

Jf (p)
dσgM |f −1(q),

where Mreg is the regular locus of f and Jf is the generalised
Jacobian of f .

Example: if M = S × S ′ is a Riemannian product, we have Jf ≡ 1
and the above theorem reduces to the classical Fubini theorem.

This theorem can be generalised to non-smooth f (Federer).
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Strategy of the proof: application of the coarea formula

We apply the coarea formula to π : I → ι(X ), π(g , g · x) := x , to
find that E[µ̄X (g · ι)] equals∫
x∈ι(X )

ωn
FS(x)

∫
g∈GL(N,C)

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

1

Jπ(g , x)

g∗ωn
FS(x)

ωn
FS(x)

dσ,

where Jπ is the generalised Jacobian of π (I learned this trick from
Jean-Yves Welschinger).

The key result is the following.

Proposition

For any g ∈ GL(N,C) and x ∈ ι(X ) we have

1

Jπ(g , x)

g∗ωn
FS(x)

ωn
FS(x)

= 1.
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Strategy of the proof: global Cartan decomposition

We are thus reduced to compute the following integral:

E[µ̄X (g · ι)] =

∫
x∈ι(X )

ωn
FS(x)

∫
g∈GL(N,C)

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

dσ.

We write g = ηΛu (η, u ∈ U(N) and Λ = diag(λ1, . . . , λN) ∈ RN),
by recalling the global Cartan decomposition for GL(N,C).
Recalling our hypothesis that dσB is unitarily invariant and
absolutely continuous, we may write

dσ(g) = ρ(Λ)
∏

1≤i 6=j≤N
|λi − λj |2dΛ dσU(η) dσU(u),

for some density function ρ that depends only on Λ.
Example: ρ(Λ) = exp(−

∑N
i=1 λ

2
i ) for the Gaussian unitary ensemble.

In what follows, we write ρ′(Λ) for ρ(Λ)
∏

1≤i 6=j≤N |λi − λj |2.
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Strategy of the proof: reduction to CPN−1

Thus, noting g = ηΛu, the integral over GL(N,C) reduces to∫
g∈GL(N,C)

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

dσ

=

∫
RN

ρ′(Λ)dΛ

∫
U(N)

dσU(η)

∫
U(N)

(ηΛu) · Zi (x)(ηΛu) · Zj(x)∑N
m=1 |(ηΛu) · Zm(x)|2

dσU(u)

=

∫
RN

ρ′(Λ)dΛ

∫
U(N)

η

(∫
U(N)

(Λu) · Zi (x)(Λu) · Zj(x)∑N
m=1 |(Λu) · Zm(x)|2

dσU(u)

)
η−1dσU(η)

For each p ∈ CPN−1 we have StabU(N)(p) = U(1)× U(N − 1),
which implies that the above integral in u is over
U(N)/U(1)×U(N − 1) ∼= CPN−1. By the uniqueness of the group
invariant measure on homogeneous spaces, we find that dσU(u)
must be a constant multiple of ωN−1

FS .
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Strategy of the proof: computation over CPN−1

We are thus reduced to the computation over CPN−1, where
explicit calculations in polar coordinates are available. Exactly as
we saw in the previous example, we find the following.

Proposition∫
U(N)

(Λu) · Zi (x)(Λu) · Zj(x)∑N
m=1 |(Λu) · Zm(x)|2

dσU(u) is a diagonal matrix.

Thus, the integral∫
g∈GL(N,C)

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

dσ

=

∫
RN

ρ′(Λ)dΛ

∫
U(N)

η

(∫
U(N)

(Λu) · Zi (x)(Λu) · Zj(x)∑N
m=1 |(Λu) · Zm(x)|2

dσU(u)

)
η−1dσU(η)

over GL(N,C) becomes a constant multiple of the identity matrix.

Yoshinori Hashimoto Random Kodaira embedding 18/20



Kodaira embedding and the centre of mass Results Statements Incidence variety and coarea formula Proof

Strategy of the proof: conclusion

Thus, for each x ∈ ι(X ) we find that∫
g∈GL(N,C)

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

dσ

is a constant multiple of the identity matrix, hence so is

E[µ̄X (g · ι)] =

∫
x∈ι(X )

ωn
FS(x)

∫
g∈GL(N,C)

g · Zi (x)g · Zj(x)∑N
m=1 |g · Zm(x)|2

dσ,

as claimed.
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Thank you very much for listening!
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